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Abstract: Lithium-ion batteries (LiBs) are used as the main power source in electric vehicles (EVs).
Despite their high energy density and commercial availability, LiBs chronically suffer from non-
uniform cell ageing, leading to early capacity fade in the battery packs. In this paper, a non-invasive,
online characterisation method based on deep learning models is proposed for cell-level SoH estima-
tion. For an accurate measurement of the state of health (SoH), we need to characterize electrochemical
capacity fade scenarios carefully. Then, with the help of real-time monitoring, the control systems
can reduce the LiB’s degradation. The proposed method, which is based on convolutional neural
networks (CNN), characterises the changes in current density distributions originating from the
positive electrodes in different SoH states. For training and classification by the deep learning model,
current density images (CDIs) were experimentally acquired in different ageing conditions. The
results confirm the efficiency of the proposed approach in online SoH estimation and the prediction
of the capacity fade scenarios.

Keywords: condition monitoring; state of health; convolutional neural network; current density
distribution; electric vehicles; lithium-ion batteries; magnetic field imaging

1. Introduction

The share of electric vehicles (EVs) is increasing in the global transportation system
thanks to the continuous reduction of the manufacturing costs of the lithium-ion battery
(LiB) cells/packs (LiB pack costs reduced from USD 1183/kWh in 2010 to USD 156/kWh
in 2019 [1]). LiBs for EVs offer a range of benefits over other battery types including higher
specific energy, higher energy density, and longer life cycles. The EV markets demand
higher cell capacities to eliminate the range of "anxiety" problems and accelerate the uptake
of EVs according to government plans. However, it is well-known that high-capacity
battery cells are subject to non-uniform early ageing, especially due to fast charging [2].
Predicting the lifetime of LiBs is a critical challenge that causes limitations on integrating
battery electric vehicles (BEVs) into the market. Moreover, LiB life performance cycles are
inextricably tied to the underlying mechanisms of their ageing [3].

The EV battery pack is composed of cells and modules. In a module, LiB cells can
be arranged in series/parallel based on their form factors, e.g., pouch, cylindrical, and
prismatic [4]. During their lifetimes, LiBs exhibit gradual decreases in their available
capacities, manifested as a loss of autonomy for the powered device. This is observed
both during charge/discharge cycling and in storage, which is often known as calendar
ageing [5]. Non-uniform ageing in the LiB cells makes the task of a battery management
system (BMS) complex, especially during the charging/discharging process, as the cells
operate under different conditions depending on their state of health (SoH) and state of
charge (SoC). In a battery pack, as shown in Figure 1, the BMS monitors parameters that
are affected by SoC and SoH in each module, including temperature, voltage, and magnetic
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field data captured from each cell in a module. Non-uniform ageing can be rooted in
manufacturing inconsistencies, e.g., new pouch cells with slight differences in capacity,
impedance, and self-discharge rate. This causes significant energy imbalance among cells
leading to the overall degradation of the battery pack. Therefore, accurate calculations of
the SoH in individual cells will enhance the BMS functionality in SoX (SoH, SoC, SoF (state
of function), and SoP (state of power)) monitoring, prolonging the battery cycle/calendar
life, and ensuring higher power reliability [4,6,7].

Figure 1. Overview of an EV battery pack. In each module, key parameters, including the magnetic
field, are measured for each cell, and the generated data are then fed to the BMS.

The SoH is an important parameter for a LiB cell indicating the degradation level [2],
and it is normally determined as the percentage of the cell’s full charge capacity C f ullcharge to
its designed capacity level Cdesign [8]. For the reasons mentioned above, cells show nonlinear
complex behaviors, making the SoH estimation in real time a challenging task. Online
monitoring is an important function in an EV since it provides important information
for a BMS to optimize the charging trajectories, distribute the charge, and heat across
the cells uniformly, preventing hazardous conditions, such as thermal runaway [9]. To
date, non-invasive SoH estimation has not been adopted by the EV industry and OEM
manufacturers due to the challenges in designing sensory devices, and/or implementing an
effective estimation algorithm that operates in real time. Accurate SoH estimation further
allows predicting the calendar ageing, timely maintenance, and replacement schedules
for battery packs, saving significant costs for EV manufacturers [10]. Some conventional
SOH estimation methods include direct experimental methods, using adaptive filters in
model-based approaches, and data-driven, and machine learning techniques.

The experimental methods, e.g., measuring the internal resistances using the spec-
troscopy technique, are normally not well suited for online monitoring and require con-
siderable time for data collection in lab conditions. These methods are used to evaluate
the battery ageing behavior based on measurements and data collection [11]. Two of the
most common approaches are measuring internal resistance/impedance and measuring the
energy level [10]. To measure internal resistance in LiBs, the authors of [12] used the current
pulse method to study the internal resistance and heat generation of LiBs during charging
and discharging. Using experimental techniques to measure the battery’s internal resistance
leads to accurate results, yet onboard measurements are challenging. However, the internal
impedance of a battery tends to increase with age [10], leading to error accumulation in the
results. To overcome this problem, the authors of [13] suggested combining short-term re-
laxation effects and fractional order impedance modelling with electrochemical impedance
spectroscopy (EIS) characterisation. Their approach involved a non-destructive method of
measuring battery impedance that offered extensive information on the battery’s status.
Using EIS as part of a BMS, however, presents numerous obstacles, including establishing
the operational circumstances under which the sensitive EIS measurement may be done.
Furthermore, many hours of rest are necessary in laboratory conditions to maintain the
battery’s consistent reaction; however, such rest times are inefficient for BMS applications.

In the industry, direct measurements of the current, voltage, and temperature using
sensors have made accurate SoH estimations feasible in battery packs. The authors of [14]
proposed a comprehensively optimised framework for the LiB SOH estimation with the
local Coulomb counting curve (LCCC), aiming to enhance the estimation for data-driven
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estimators. Moreover, in a recent project, a UK-based company, DukosiTM, developed a
revolutionary battery management solution that uses wireless communications protocols
to send data on the state of individual battery cells throughout the battery pack. According
to [15], the BMS chipset combines near-field communication technology with a single
antenna to monitor and analyse data directly on individual battery cells using machine
learning algorithms, and wirelessly transmit these data to the central BMS.

The model-based and adaptive filtering methods, also called soft approaches, e.g.,
Kalman filtering, can better suit the onboard applications using a simple battery model,
e.g., an equivalent circuit model (ECM). Model-based methods are widely used to model
the battery behaviors for SoH and SoC estimations. In the literature, several adaptive
algorithms are highlighted to identify the parameters of various types of ECMs. Kalman
filter-based methods are frequently applied for achieving more accurate estimations [16,17].
For example, in [18], the authors use battery polynomial models with the dual extended
Kalman filter (DEKF) method to estimate SoC and SoH simultaneously. Other popular
adaptive filtering algorithms are least square-based algorithms [19,20]. To reduce the
estimation processing time, the authors of [19] suggest a battery model based on least-
square support vector regression (LS-SVR).

Overall, adaptive algorithms are rather robust with simple structures. In [21], the
authors proposed a new robust method entitled the extendable range multi-model estimator
(ERMES) for accurate SoC and SoH estimations. In this method, a finite number of models,
based on the Thévenin model of the battery, are considered in the form of state-space
models. Then, an iterated extended Kalman filter (EKF) is applied to each model for
SoH estimation. In another study, the authors of [22] used CNN to conduct a robust
SoH estimation method by extracting indicators for changes in the level of SOH between
two charge/discharge cycles. Then, the random forest algorithm was applied to the final
SOH estimation by exploiting the indicators from the CNNs. Through a comparison, the
robust estimation methods demonstrated improved estimation accuracy and robustness.
However, to achieve the desired accuracy, the algorithm can become complex, demanding
high processing power, which is out of reach on the EV’s onboard processors. Models
are then needed for describing the complete behavior of a battery cell, such as a physics
model. Achieving a reduced-order electrochemical (physics) model for faster processing
is still under research. Using the pseudo-2-dimensional (P2D) physics model, the cell’s
partial differential equation can represent the battery’s electrochemical reactions and heat
transfer [10]. Another advantage of physics models is the accurate representation of the
changes in a magnetic field and the produced current density distribution across electrodes
and the electrolyte.

To achieve high-fidelity models for LiBs, data-driven, and machine learning meth-
ods [23,24] are used with successful results. However, these approaches face two main
challenges: (1) They need a large volume of training data for building an accurate model.
This means a significant charge/discharge cycle testing. (2) The training data set must be
large enough to include all the online physical and dynamic changes resulting in the early
capacity fade. A data-driven approach can become really useful in collecting historical
degradation data, and understanding the ageing process, which is why deep learning
methods are applied for SoH estimation in EV battery systems [25–27]. In another valuable
work, the authors of [28] used machine learning methods for characterisation of the critical
cell parameters, i.e., voltage, current, and temperature, which affect ageing. On the other
hand, in our paper, the unique ageing monitoring method using direct measurements of the
magnetic field is presented; it demonstrates that the current density distribution pattern is
linked to battery ageing. Moreover, a novel SoH estimation method based on the captured
current density images is utilised for training the CNN model.

Deep learning methods are generally known as improvements for existing multi-layer
perceptron models since they are designed to eliminate former limitations. Among deep
learning methods, the convolutional neural network (CNN) has a strong capability of
performing feature distillation and representation with the main application in image
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recognition [22,29,30]. To summarise, some of the mentioned SoH estimation methods, as
well as their characterisations, are presented in Table 1.

Table 1. A summary of the main studied SoH estimation methods, including their categories, benefits,
drawbacks, and errors%.

Estimation Category Approach Benefits Drawbacks SoH
Error%

Experimental methods
Measuring internal

resistance and internal
impedance [10,12]

+ Easy implementation
+ Widely used in

automotive profiles

- Operating off-line
- Possibility of error

accumulation
- High time consumption

<3%

Experimental methods
Electrochemical Impedance

Spectroscopy (EIS) [13]
+ Low time consumption

+ Very good accuracy
- Required hardware is

complex and costly <2%

Model-based methods
(Adaptive filtering) [16,17]

Kalman filter-based
method [18]

Robust estimation
method [21,22]

+ Operating onboard
+ Low time consumption

+ High accuracy

- Accuracy depends on
parameters of battery

- High computational cost
<2%

Model-based methods
Least square-based

method [19]

+ Operating onboard
+ Widely used in

automotive profiles

- High computational
complexity <5%

Machine Learning
methods [23,24]

Convolutional
Neural Network(CNN)

method [22,28,29]

+ Operating Online
+ Effectively capturing LiB’s

non-linear characteristics

- Requires large dataset
to train the network
- The precision of the

method is conditional *

<1.5%

* It depends on how much the model applied to the experimental dataset is accurate.

In this paper, we propose a hybrid approach based on both experimental and model
data. A highly accurate Newman model of the test cell is developed to improve the data
set library by studying the LiB pouch cell in different ageing scenarios. A CNN algorithm
is then used to characterise the current density distribution collected as a series of images
from the model under different ageing scenarios during the charging process. Finally,
our designed CNN-based method for SoH estimation is used as a part of the condition
monitoring system (CMS) in the battery pack to accurately detect and predict the percentage
of SoH for each pouch cell in every module. Current density imaging in LiBs, as studied
fundamentally in our previous research [31] and in [32], is an online, non-destructive
method that uses an array of magnetic sensors to capture the current density distribution
of an individual cell. The suggested CNN algorithm establishes a relationship between
LiB parameters and SoH in a multi-parameter cell model, and is particularly useful in
fast-charging scenarios as a major source of battery degradation and overheating. Our
contributions can be summarised as follows:

• A novel SoH estimation approach based on current density images (CDIs) is proposed.
This method uses the convolutional neural network (CNN) algorithm to classify and
characterise a collection of captured CDIs, from a highly accurate Newman model of
the NMC graphite cells of the battery pack and calculates the accurate SoH based on
the cell parameters.

• Fast, online readings using an Arduino board connected to a 4 × 8 array of magnetic
sensors were carried out for capturing the current density distributions across the
positive electrode of a Li-ion pouch cell.

• As a part of a condition monitoring system (CMS), a Python-based user interface with
an embedded inference model was designed to monitor the remaining SoH of the
selected cells, based on the recorded current density images.

The rest of the paper is organised as follows. In Section 2, the advantages of monitoring
magnetic field, as well as preliminaries of the Newman model are described. In Section 3,
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the CNN model is proposed to classify CDIs captured from the positive electrode in
different SoH conditions. Validation and discussion of results are then provided in Section 4.
We used a Doyle–Fuller–Newman (DFN) model of Nissan Leaf pouch cells based on the
experimental data to study different ageing scenarios using the vehicle data to better
understand the behavior of LiB pouch cells in a pack arrangement. We measured the
current density distribution, i.e., current density images, acquired by quantum-based
fluxgate magnetometers, placed on the cell. The experimental test bench and the validation
of the 3D DFN model are also demonstrated in this section. Finally, the paper is concluded
in Section 5.

2. Magnetic Field Monitoring in LiBs

Measurements of small changes in induced magnetic field maps are used to diagnose
mechanical degradation in LiBs [33]. This technique is further found useful for assessing
the level of lithium incorporation in the electrode. SoH estimation is not a trivial task
among BMS functions, since the ageing process of LiBs naturally takes several cycles over a
long period. In [34], magnetic field monitoring is also used as a non-destructive approach
for measuring mechanical degradation and the ensuing capacity fade. The approach was
found to be effective for testing post-manufacturing faults; however, it cannot be used
for online monitoring. Another study shows that the cell’s produced magnetic field can
provide useful information for the estimation of the cell temperature [35]. The magnetic
field data (and the current density distribution) can provide promising measurements
of internal cell parameters. However, an advanced method is required to characterise
ageing using the cell’s current density distribution. For this purpose, a DFN model (or
simply, the Newman model) is used to describe the internal states of the battery. Moreover,
the developed Newman model based on the experimental data is used to study current
densities in a cell.

2.1. Preliminaries of the DFN Model

A physics-based electrochemical model of the cell used in lab experiments was re-
quired for further studies of BMS functionalities, such as SoC and SoH estimation and fast
charging. The DFN model of the LiB cell used in the experimental part of this paper is
developed based on electrochemistry laws and is described by a set of partial differential
equations (PDEs). In this section, we briefly demonstrate and formulate the Newman
model used in this paper.

The Nissan Leaf third-gen LiB cell consists of positive and negative electrodes, a
separator, and two current collectors. The negative electrode, separator, and positive
electrode are shown in the x dimension as demonstrated in Figure 2, where the cell is
modelled during charging. In Figure 2, the thickness of the negative and positive electrodes
are shown as δ− and δ+, respectively, and the solid-phase materials are represented by
spheres with a radius of Rs; it is shown how intercalated Lithium-ions in the positive
electrode (i.e., x ∈ [L− δ+, L]) exit the solid particles, pass through the separator in the
electrolyte phase, and enter the solid particles in the negative electrode (i.e., x ∈ [0, δ−]).

The governing equations of the Newman model are summarized in Table 2. Moreover,
key parameters and their values used in the developed model of the Nissan Leaf’s cell are
provided in Table 3 [36,37]. According to Fick’s law of diffusion, the Li-ion concentration
in the solid phase (shown as cs in equations) in both positive and negative electrodes is
given in (1a), where t denotes time, Rs is the radius of particles, and r ∈ [0, RS]. Similarly,
the Li-ion concentration in the electrolyte phase (shown as ce in equations) is given in (1b),
based on the electrolyte volume fraction (also known as porosity), the diffusion coefficient
of Lithium-ion in the electrolyte phase and the transport number of ions. Moreover, the
volume-specific rate of the electrochemical reaction is shown as JLi and F denotes Faraday’s
constant. Symbols used in (1b) are further described in Table 3.
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Figure 2. Schematic of the LiB model during charging.

Table 2. Governing equations of the DFN model.

Li-ion concentration Solid phase (cs) ∂cs
∂t = Ds

r2
∂
∂r

(
r2 ∂cs

∂r

)
(1a)

Electrolyte phase (ce) εe
∂ce
∂t = ∂

∂x

(
ε

p
e De

∂ce
∂x

)
+

1−t0
+

F jLi (1b)

Boundary condition for
Li-ion concentration Solid phase ∂cs

∂r

∣∣∣
r=0

= 0, −Ds
∂cs
∂r

∣∣∣
r=RS

=
jLi
as F (2a)

Electrolyte phase ∂ce
∂x

∣∣∣
x=0

= ∂ce
∂x

∣∣∣
x=L

= 0 (2b)

Exchange current density i0 = k0cαa
e (cs,max − cs,e)

αa cαc
s,e (3a)

Measurable
terminal voltage V(t) = φs(L, t)− φs(0, t)− R f

Asurf
iapp(t) (3b)

Table 3. Key parameters and their values used in the DFN model of the cell [36,37].

Symbol Description Value

Asur f Area of electrode plate 6.264 [cm2]

αa Anodic transfer coefficient 0.5 [1]

αc Anodic transfer coefficient 0.5 [1]

as The specific inter-facial surface area 3εs/Rs

cs,maxpos Maximum solid-phase concentration in positive electrode 49,000 [mol/m3]

cs,maxneg Maximum solid-phase concentration in negative electrode 31,507 [mol/m3]

cs,e Solid-phase concentration at the solid–electrolyte interface cs,e(x, t) = cs(Rs, x, t)

δp Positive electrode thickness 60 [µm]

δsep Separator thickness 30 [µm]

δn Negative electrode thickness 60 [µm]

Ds Li-ion diffusion coefficient in the solid phase 5× 10−13 [m2/s]

De Li-ion diffusion coefficient in the electrolyte 7.5× 10−11 [m2/s]

εs,pos Volume fraction of active particles in positive electrode 0.35

εs,neg Volume fraction of active particles in negative electrode 0.68

εe Electrolyte volume fraction 0.65

iapp Applied current through the cell (variable)

K0pos Kinetic rate constant in positive electrode 1.38× 10−5
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Table 3. Cont.

Symbol Description Value

F Faraday’s constant 9.65× 104 [C/mol]

K0neg Kinetic rate constant in negative electrode 0.64× 10−5

L Cell thickness 160 [µm]

p Bruggeman porosity exponent 1.5

R f Film resistance 2× 10−3 [Ω ·m2]

Rs,pos t0
+ Transport number 0.363

x Position across the cell (variable)

Boundary conditions for Li-ion concentration in both solid and electrolyte phases are
given in (2a), (2b), respectively. In (2a), Ds denotes the diffusion coefficient in the solid
phase and jLi is the volumetric electrochemical reaction rate, which is calculated based on
the active material volume fraction. Symbols used in (2a) are defined in more detail in
Table 3.

The solid phase potential, φs, which is formulated based on Ohm’s law, as well as the
electrolyte phase potential, φe, and their boundary conditions are all defined in more detail
in [36,37]. The exchange current density described in (3a) is formulated based on the PDEs
of Li-ion concentration and potential in both solid and electrolyte phases. Finally, as given
in (3b), the terminal voltage is calculated based on φs, the film resistance of the current
collector, the area of the electrode plate, and the applied current through the cell. More
description of the symbols used in (3a), (3b) is provided in Table 3.

2.2. Sources of Magnetic Fields Produced by a LiB Cell

Primarily, there are two major sources of magnetic fields produced by a LiB cell; the
first source includes surface currents in the electrode, and the second source includes
charge transfer currents, which mainly occur in the electrolyte. In this paper, we focus on
current density originating from the positive electrode, where the electron conduction in
an electrode can be formulated in a similar way to Ohm’s law:

∇ · is = 0, (1)

where is is the current density vector in the electrode, and described as:

is = −σs∇φs, (2)

where σs is the electrical conductivity (SI unit: S/m) and φs is the electric potential in the
electrode. The changes in the value and direction of the mentioned currents will determine
the rate of the cell’s produced magnetic field [35]. Furthermore, preliminaries of current
density estimations are described in detail in our previous work [31].

3. Characterisation of Current Density Images Using Deep Learning

Measurements of the current densities on the surfaces of the electrodes provide the
required data to produce CDIs [31]. Developing closed-form equations to translate the
CDI parameters to SoH values is difficult due to the complicated dynamics. This includes
conducting data normalisation in the first place and processing the signals before feeding
them to the network, to prevent delaying the training process and lowering estimation ac-
curacy. For this purpose, the application of deep learning is suitable for the characterisation
and classification of CDIs. CNNs are powerful methods for extracting characteristics from
different types of high-dimensional data, such as images, and they have been employed
in a variety of applications including image processing, speech recognition, and text cat-
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egorisation. High temporal correlations between nearby variables are common in these
high-dimensional signals, which may be successfully retrieved via convolution processes.

CNN, as a deep learning algorithm originally designed for image processing, has a
strong capability of feature distillation, and feature extraction in CDIs, generated from the
DFN model. CNN is basically a layered neural network model composed of connected
layers of feature mapping and pooling. These series of layers determine the number of
parameters involved in training the neural network. For feature map rth in layer l, the
node Ca,t

r,l at ath row and tth column can be computed as

Ca,t
r,l = f

(
∑
v

ml−1

∑
i=0

nl−1

∑
j=0

xa·sl+i,t·dl+j
v,l ω

i,j
v,r,l + br,l

)
, (3)

where xv,l ∈ Rp×q×v is layer lth input with depth (number of channels) v, with p × q
channel size. For the next connected layer input, v denotes feature maps count in the layer
(l − 1)th. ωv,r,l ∈ Rml×nl is vth channel of the filter rth in layer l, with size ml × nl and
stride set to (sl , dl). Bias of rth feature map is modeled as br,l . f (.) denotes the activation
function, which is rectified linear unit (ReLU), given by

f (x) =
{

0 for x < 0
x for x > 0

(4)

The pooling layer is a downsampling technique that minimises the number of feature
maps generated in a convolution layer by using the maximum pooling approach, which is
modelled as:

Pa,t
r,l+1 = max

06i6m(l+1)−1,06j6n(l+1)−1

{
C

a·s(l+1)+i,t·d(l+1)+j
r,l

}
, (5)

or an average pooling strategy represented by

Pa,t
r,l+1 =

∑
m(l+1)−1
i=0 ∑

n(l+1)−1
j=0

(
C

a·s(l+1)
r,l + i, t · d(l+1) + j

)
m(l+1) × n(l+1)

, (6)

where
(

s(l+1), d(l+1)

)
is the strides of the pooling filter in layer l + 1 and

(
m(l+1), n(l+1)

)
is pooling area size [29]. Subsequently, by adding fully connected layers of convolution,
pooling, and flattening, the final output is derived as follows:

O = f

(
z

∑
j=1

x(j)ω(j) + b

)
(7)

where x is the previous layer inputs, ω and b denotes the weights and biases connecting
to x and final output, respectively. Finally, O is the estimated battery SoH on the output
of CNN.

The proposed approach in the CDI image classification is illustrated in Figure 3
where the CDIs are the input layer of the CNN with several layers of convolution and
sub-sampling (pooling) for image classification.

Figure 3. The designed CNN architecture for SoH estimation. The captured CDI from a Li-ion cell is
fed into the input layer of the neural network and the final output is the percentage of SoH, presenting
the state of health in the corresponding cell.
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The proposed deep learning model consists of a deep CNN model along with a fully
connected single output layer to provide the regression results. The training and validation
dataset is collected from the experimental and the DFN model results. In fact, the addition
of CDIs achieved from the physics-based model into the training dataset has considerably
improved the accuracy of the classifier. As a result, different parametric variations, i.e.,
current and voltage distribution across the electrodes, can be evaluated with high accuracy.
The optimizer in the TensorFlow library chosen in this work is “Adam” with a mean
squared error loss function.

After providing the dataset, the collected CDIs are labelled with LiB parameters, and
the model is trained using the TensorFlow library. See the step diagram of Figure 4 for the
complete process of data extraction and learning process. To avoid over-fitting during the
training and to utilize the CNN model to generalize and make accurate predictions for new
entries, the cross-validation technique is applied to the model. Hence, CDIs captured from
the DFN model are used as the training set to train the CNN model, as well as a validation
set including CDIs collected from the experimental results to evaluate the performance of
the CNN model.

Figure 4. This step diagram shows the process of how a CNN model is trained to characterise the
CDIs for the SoH estimation.

The first layer has four two-dimensional convolution filters (aka conv2D in Tensor-
Flow) with 3 × 3 filter kernel sizes and 30 × 22 input dimensions. The input layer is
structured into 30 × 22 fixed point values as the input magnetic field images to the CNN
model have this resolution. Furthermore, as the model inference process was designed to
run in real time on low-power embedded CPUs for battery condition monitoring systems,
the smallest filter size was desired that provides an acceptable accuracy, and the 3 × 3
kernel size was found to be a good trade-off between the inference time and accuracy.

4. Experimental Validation and Discussion of Results
4.1. Experimental Test-Bench and Model Validation

In the experimental setup, the Nissan Leaf 3rd-Gen pouch cell used for testing is
connected to the eight-channel Neware BTS-4000 battery cycler (25A per channel) for
charging, as shown in Figure 5. The current collectors of the LiB pouch cell are made of
Copper and Aluminium. The positive electrode is Li(Ni1/3Mn1/3Co1/3)O2 (NMC) and
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the negative electrode is made of graphite. Moreover, the electrolyte in this cell is LiPF6
in 3:7 EC:EMC. Using a 4 × 8 array of fluxgate magnetic sensor devices, connected to an
Arduino board via an analog connection, the magnetic field images (MFIs) are captured
and sent to the computer for further data processing using MATLAB. The area of each
magnetic field sensor used in this paper is 16 mm2. Compared to Hall-effect sensors, which
are conventional methods of sensing magnetic fields, fluxgate sensors offer considerably
higher accuracy and sensitivity, lower noise and drift, and high linearity with a sensing
range of ±2 milliteslas (mTs). To test the sensor’s resolution, it was placed on a PCB trace to
measure the magnetic field on the top of a wire carrying 50 mA current. It was observed
that with each 50 mA change in current, the sensor detected a change of 10.2 µT in the
magnetic field as the output.

Figure 5. Nissan leaf pouch cell connected to the Neware BTS4000 battery cycler, with magnetic
sensor array module placed on top of the cell.

Furthermore, a DFN model of the pouch cells was developed using the Python Battery
Mathematical Modelling (PyBAMM) tool and validated against the original experimental
data. A comparison between the practical work and the model is shown in Figure 6, with
the values of the output cell voltage during the charging/discharging cycle process. The
experiment consists of a cycle of constant current (C/10) discharge, a 1 h rest, and a constant
current (1 A) charge until the voltage reaches 4.1 volts.

The MFIs and corresponding CDIs (according to Maxwell’s original circuital law, the
magnetic field and current density are directly proportional to each other. Hence, the CDIs
will have the same patterns as magnetic field readings) were monitored during the charging
process. Using an embedded microcontroller on the sensor array, an inversion calculation
along with a noise cancellation algorithm was applied to convert the magnetic field profile
to the current density profile. The experimental CDIs are compared with the CDIs acquired
from the cell 3D model, generated in COMSOL, as explained in our previous paper [31];
for further validation and processing to calculate the SoH values, see Figure 4.
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Figure 6. Comparison of charging/discharging cycle curves in the experiment and the DFN model of
the cell.

4.2. The Effect of Fast-Charging and High Ambient Temperature on CDIs

To improve the dataset used for training the CNN, cells must be studied in different
ageing scenarios under fast charging at different ambient temperatures. As observed, the
pattern of current density distribution changes with different levels of capacity fade. In
Figure 7, one can see the CDIs captured at a charging process and C-rates, starting from a
fresh cell and ending in an aged cell.

As noticed by comparing Figure 7a,b, the current density in a fresh NMC/graphite
cell is as high as 182 A/m2 and 149 A/m2 in C-rates of 6C (i.e., a theoretical 10-min charge)
and 5C (i.e., a theoretical 12-min charge), respectively. Naturally, charging cells with higher
C-rates will provide higher current densities in the positive electrode. Moreover, the
distribution of current density in the positive electrode is less homogeneous when the cell
is charged at a higher C-rate. This is based on the provided CDIs, where the difference
between the highest and the lowest values of current density measured in Figure 7a is
49 A/m2, whereas in Figure 7b, this value is 38 A/m2.

Similarly, in Figure 7c,d, CDIs captured from the aged version of the formerly studied
NMC/graphite cells are illustrated. As studied here, the highest measured current density
originating from the positive electrode of an aged cell is 57% lower than the highest
measured current density in a fresh cell, proving that ageing will affect the intensity of
current density in a LiB cell.
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Figure 7. CDIs from the positive electrode at room temperature (293.15 [K]). (a,b) A fresh cell was
charged with C-rates of 6C and 5C, respectively. (c,d) An aged cell was charged with C-rates of 6C
and 5C, respectively.

To better understand the effect of ambient temperature, cells are studied during the
fast-charging process in different ambient temperatures up to 323.15 [K] (50 ◦C). It is known
that high temperatures in LiBs will increase the ionic conductivity in the electrode, as well
as the rate of chemical reactions, with expected higher current densities around the tab [38].
As shown in Figure 8, the difference between the maximum and minimum measured
current density in captured CDIs is calculated to show the current density distribution rate,
while cells are under fast charging in different ambient temperatures.

As observed, rising temperature from 25 ◦C to 50 ◦C affects the intensity of current
density around the tab (up to 1.09%) and left the measured current densities in the rest of
the positive electrode nearly unchanged.



Electrochem 2022, 3 781

Figure 8. The effect of high ambient temperature on current density distribution during fast charging
scenarios for fresh and aged cells.

4.3. Classification of CDIs and CNN Training Accuracy

For training the CNN used for SoH estimation, a comprehensive dataset of CDIs
representing different ageing states is needed. For better training, the datasets are taken
at different points of the cycle. Once the training phase of the CNN classifier and the
regression layer is done, the estimator can find the relation between the CDIs and the
corresponding SoH value, as different SoH values correspond to the different distribution
of current density across the electrode [31].

In this paper, training the CNN models used for image classification is carried out with
great precision, as shown in Figure 9, to achieve high-accuracy SoH estimation. Figure 9
shows the mean squared error of the CNN prediction during the training phase. As evident,
after 100 epochs, the training is nearly completed, with a minor error of 0.01%. The error
distribution among the training set is further shown in Figure 10 for SoH values from 5% to
97%, and for validation of the trained model, 20% of the training dataset is used. The error
figures show that the model is able to extract the required features from the CDIs with high
accuracy, and estimate the SoH value of the experimental test cell that is charging.

Finally, our designed CNN-based method for SoH estimation is applied to experi-
mental datasets, related to NMC-Graphite pouch cells in three different ageing scenarios,
during 4000 full cycles. As shown in Figures 11a and 12a, the estimated SoH values are
compared with reference SoH values for a brand-new and an aged cell (after 4000 cycles),
respectively. In Figures 11 and 12, the grey region represents the 2% error range of the
actual SoH values, which also confirms that the estimation is within the 2% error margin to
show high accuracy. In fact, the calculated validation error for a brand-new cell is 0.6%,
and for an aged cell is 1.2%. Moreover, samples of CDIs captured from the brand-new and
the aged cells are shown in Figure 11b and Figure 12b, respectively.

Studying the cell model proves that the intensity of current density will be consistently
reduced when the cell ages and the current density distribution will become increasingly
homogeneous across the electrode. In Figure 13b, samples of CDIs captured from a very
old cell (cycled more than 2 years) are demonstrated, showing a small difference between
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the states. This will lead to a minor increase in the validation error, causing the estimation
accuracy of 97.10% when studying a very old cell. As shown in Figure 13a, this error will
not exceed the dark grey boundaries of 5% error.

As the CNN model is validated using the real-time HIL setup, the CNN model can be
easily exported to the standard embedded BMS processor for online SoH condition monitoring.

For better integration in an EV setup, an online monitoring system for the battery
pack and a user interface were designed with Python programming language as part of
a condition monitoring system Figure 14. In this user interface, the user can easily view
the cell status in a pack along with the recorded CDIs. The UI is designed for the user to
select the cell or the module in operation and monitor the health and internal temperature
information.

Figure 9. Mean squared error of the model output during training against the validation set.

Figure 10. Error distributions on the validation set for different values of SoH and the correspond-
ing CDIs.



Electrochem 2022, 3 783

Figure 11. (a) SoH(%) estimation results for a new cell. (b) Captured CDIs from the new cell.
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Figure 12. (a) SoH(%) estimation results for an aged cell. (b) Captured CDIs from the aged cell.
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Figure 13. (a) SoH(%) estimation results for the aged cell. (b) Captured CDIs from the aged cell.
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Figure 14. User Interface (UI) design for the condition monitoring system (CMS)—Cell ID is identified,
as well as the related SoH% and SoH estimation graph.

5. Conclusions

In this paper, we proposed a non-invasive method for the online estimation of SoH in
EV battery cells. The proposed method uses experimental images of the current density
distribution (CDI) across the positive electrode, and a CNN deep learning model to classify
the unnoticeable changes in the magnetic field, i.e., magnetic susceptibility, and the different
patterns in CDIs.

The CDIs collected were validated using the developed DFN cell model and exper-
imental Nissan Leaf pouch cells in different ageing scenarios (from SoH of 95% to 10%).
The experimental results demonstrate the efficacy of the trained model in the accurate
estimation of the SoH values (1.5% error). Once trained, the CNN-based approach can be
comfortably used for online cell monitoring, as the algorithm can be run with the processing
power with the capability of the current embedded processors. In summary, this paper has
established, analytically and experimentally, a novel non-invasive method for the condition
monitoring of battery cells by capturing magnetic field images from low-cost accurate
magnetic field sensor arrays. For future research, the proposed approach can be extended
to the learning models of all LiB form factors, especially the cylindrical cells. In this respect,
the CNN architecture can be enhanced in terms of the number of inputs, and the use of
transfer learning for high-resolution CDI images.
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