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Abstract An impact oscillator is a non-smooth dy-
namical system with discontinuous state jumps whose
dynamical behavior illustrates a variety of non-linear
phenomena including a grazing bifurcation. This spe-
cific phenomenon is difficult to analyze because it co-
incides with an infinite stretching of the phase space
in the neighborhood of the grazing orbit, resulting in
the well-known problem of the square-root singular-
ity of the Jacobian of the discrete-time map. A novel
Takagi–Sugeno fuzzy model-based approach is pre-
sented in this paper to model a hard impacting system
as a non-smooth dynamical system including discon-
tinuous jumps. Employing non-smooth Lyapunov the-
ory, the structural stability of the system is analyzed
to predict the onset of the destabilizing chaotic be-
havior. The proposed stability results, formulated as a
Linear Matrix Inequality (LMI) problem, demonstrate
how the new method can detect the loss of stability just
before the grazing bifurcation.
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1 Introduction

Impacting systems are non-smooth dynamical systems
in which components may experience impacts. Many
experiments have been conducted on the dynamics
of systems whose numerical models interchange be-
tween continuous and discrete states [12, 15, 21, 33,
42]. Strong non-linear behavior, induced by rigid col-
lisions, has been observed in most cases driving these
systems into chaos [11]. Their unique complex dy-
namics include a periodic orbit instantly losing its sta-
bility to a chaotic vibration as a system parameter is
varied. When a tangential grazing impact occurs be-
tween the system components, a unique phenomena
known as a grazing bifurcation effectuates a local (infi-
nite) stretching of phase space, which in turn has an in-
tense destabilizing effect on system dynamics [11, 28,
29]. The dynamics of the impact oscillator have been
the subject of intense interest in the literature. From
the mathematical modeling point of view, impacting
systems are categorized as a significant sub-group of
non-smooth systems mainly because of the presence
of discontinuous state jumps in their dynamics. The
overall dynamics of such systems can be represented
by a series of smooth functions, interrupted by dis-
continuous velocity reversals, making their maps non-
smooth along the switching manifold [11, 30]. From
the stability analysis point of view, the square-root
singularity in their Poincaré map results in a sudden
change from a stable period-one behavior to an unsta-
ble, large chaotic attractor [28, 29]. The sudden change
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is excited by a grazing condition where the square-root
term of the Jacobian of the Poincaré map at the grazing
point takes an infinite value, destabilizing the system
as more impacts occur and its dynamical equations be-
come more complex.

The predominant analytical tool for the study of
non-linearities in impacting systems is discontinuity
mapping [11, 28, 29]. This approach enables the anal-
ysis of grazing bifurcations involving limit cycles and
other complex invariant sets encompassing more than
equilibria. The discontinuity map, a term first coined
by Nordmark [28], is a synthesized Poincaré map
which is piece-wise smooth and defined locally near
the grazing point at which a trajectory interacts with a
discontinuity boundary. The technique has been pop-
ular for studying the stability of impacting systems
especially when used in combination with a global
Poincaré map derived around the limit cycle of inter-
est. In this case, one can typically derive a non-smooth
map whose orbits fully describe the dynamics in ques-
tion [11]. Other attempts using explicit mapping to an-
alyze mechanical impacting systems have also been
published [7, 31]. In all cases, however, disagreements
have been observed between the theoretical analysis
employing the above methods and various experimen-
tal studies [12, 14, 42, 43]. More recently, numeri-
cal analysis of soft-impact oscillators employing the
discontinuity-mapping approach has been proposed to
study the onset of the grazing bifurcation [24, 25] with
results showing good agreement with experimental ob-
servations [15, 25]. However, a number of limitations
and difficulties, both in terms of modeling and stabil-
ity analysis, still exist when attempting to apply the
existing theory directly to hard-impacting systems as
the square-root singularity problem causes the Jaco-
bian of the discontinuity map to assume infinite values
near the grazing orbit.

Since the publication of the seminal paper by
Tanaka and Sugeno [39] on fuzzy model-based con-
trol, there has been a great deal of interest in modeling
nonlinear systems as TS fuzzy systems and formu-
lating their stability analysis as a Linear Matrix In-
equality (LMI) problem. However, this body of work
has been dominated by the study of smooth dynami-
cal systems [2, 6, 38, 40, 41] rather than non-smooth
non-linear systems whose right-hand sides are math-
ematically discontinuous. In a previous study, the au-
thors proposed a TS fuzzy modeling structure for mod-
eling non-smooth systems with a degree of smooth-

ness1 (DoS) of one (Filippov-type systems) and suc-
cessfully applied it to investigate the stability of an
example non-smooth electronic converter using non-
smooth Lyapunov theory [26, 27]. This approach has
proved to be effective in non-smooth function ap-
proximation and prediction of the edge of bifurcation
phenomena in Filippov-type systems. The proposed
non-smooth TS fuzzy modeling structure is further
developed in this paper to include the discontinuous
state jump, a dynamical attribute of hard impact os-
cillators, i.e. non-smooth systems with the degree of
smoothness (DoS) of zero. This is achieved by in-
troducing an additional set of states in the TS fuzzy
model structure. State jumps can then describe differ-
ent discontinuous states, enabling the resulting model
to represent all known complex non-linear phenom-
ena observed in hard impacting systems. Based on the
proposed TS fuzzy model, the square-root singularity
problem is then addressed by providing a Lyapunov
framework for the stability analysis to investigate the
sudden chaotic behavior in the impacting system. Al-
though piece-wise Lyapunov functions have been used
to analyze the stability of variable structured systems
[5, 9, 16, 23] and even fuzzy systems employed for the
model-based stability of non-linear smooth functions
[17], these previous studies have been all limited to the
classical notion of stability (stability of equilibria). In
this paper, the stability analysis (based on non-smooth
Lyapunov’s method) introduced earlier by the authors
to study non-smooth Filippov systems is further de-
veloped for the examination of the stability of more
complex invariant sets, i.e. periodic orbits of impact-
ing systems, by recasting the stability conditions on
Linear Matrix Inequalities (LMIs). In this way, the re-
sulting LMI conditions can accurately pinpoint the in-
stability of the periodic orbit in question near the graz-
ing point, which typically results in a discontinuity-
induced bifurcation (DIB), i.e. a grazing bifurcation,
immediately followed by abrupt chaos.

2 The hard impact oscillator and its mathematical
model

In order to study the complex dynamics of impact os-
cillators, it suffices to consider a simple but archetypal

1For a definition of the degree of smoothness of a non-smooth
system, refer to [11].
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model of a one degree-of-freedom hard impacting sys-
tem, as shown in Fig. 1. This simple impacting system
is comprised of a hard wall positioned at a distance σ

from the center of a mass M subject to an instanta-
neous impact with the wall. The state evolution of the
system can be fully described by the position s(t) and
the velocity v(t) = ds

dt
= ṡ(t) of its center of mass. As-

suming the presence of a linear spring and a dashpot
that attach the mass to a datum point (Fig. 1), the mo-
tion of impacts can be represented by the differential
equation [11]:

d2s

dt2
+ 2ζωn

ds

dt
+ ω2

ns = g(t), if s > σ, (1)

where ζ is the damping factor and ωn is the natu-
ral frequency of the oscillation. The mass and stiff-
ness are set to unity, and g(t) is an applied exter-
nal force, which we consider as a periodic sinusoidal
forcing function g(t) = F cos(wt) with a period of
T = 2π/w and an amplitude of F . It is of course
possible to apply different types of forcing function
g(t) fed from an external flow or a solution of an-
other problem [3]. However, in this paper, we consider
a periodic sinusoidal forcing function to allow for an
easier comparison of our results with previously pub-
lished studies which were based on the non-linear dis-
continuity mapping approach [11, 29, 30]. The sys-
tem becomes highly non-linear as a result of the in-
stantaneous impacts. In the absence of impacts, the
system (1) is linear and it’s solution comprises ex-
ponentially decaying free oscillations converging to
driven periodic motions at frequency w. For this im-
pacting system (Fig. 1), ζ = c/2

√
kM , ωn = √

k/M

and g(t) = G(t)/M . If we consider the mass M as a
single particle in space and assume a free-motion sys-
tem, the impact with the rigid obstacle takes place at
time t0 at which s = σ − d

2 , where σ = 0.5 m and
d is negligible. In fact, at t = t0, motion and veloc-
ity just before the impact (s(t0), v(t0)) := (s−, v−) are
mapped to the zero time motion and the zero time ve-
locity just after the impact (s+, v+) as follows:

s+ = s− and v+ = −rv−, (2)

where 0 < r < 1 is Newton’s coefficient of restitution.
The system is smooth in the region of s < σ but at
time t = t0 there is a discontinuous state jump (veloc-
ity reversal) making the system (1) non-smooth. This
can be analytically expressed assuming a discontinu-
ity boundary Σ (hard boundary H(x)) and a set of the

Fig. 1 A one-degree-of-freedom hard impact oscillator

Fig. 2 The different types of orbit close to the discontinuity
boundary Σ : (a) a solution trajectory when there is no impact,
(b) a solution trajectory at a grazing event, (c) a solution trajec-
tory when impact occurs [18]

reset map R(x) by defining the system as x = (s, ṡ)T .
Equations (1) and (2) can then be written as [11]:

ẋ = F(x), if x ∈ S+, (3)

x �→ R(x), if x ∈ Σ, (4)

where S+ = {x : H(x) > 0} and Σ = {x : H(x) = 0}.
H(x) is a smooth function, which in this case is calcu-
lated as H(x) = H(s, ṡ) = s − σ .

Figure 2 [18] shows the different types of possi-
ble orbits near the discontinuity boundary including
the solution trajectories corresponding to the grazing
event (Fig. 2b). At the time of grazing, the solution
trajectory is tangential to the discontinuity boundary
Σ . After the impact (Fig. 2c), the system states in-
stantly jump to a new position, given by the reset map
x �→ R(x).

The effect of grazing (zero-velocity impact) can be
strikingly destabilizing such that a stable periodic or-
bit is suddenly transformed to an unstable chaotic at-
tractor as demonstrated in the bifurcation diagram of
Fig. 3a. The bifurcation diagram of Fig. 3b shows the
dynamics of the impact when there is still grazing but
no abrupt chaotic orbit.
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Fig. 3 (a) Typical grazing bifurcation diagram when a graz-
ing event (Fig. 2b) occurs caused by infinite local stretching at
� = 2.97. (b) The bifurcation diagram when the value of � is
changed to � = 3. Here, � represents the frequency ratio of the
impacting system derived as � = 2ωn

wforcing

√
1 − ζ 2; M = 1 kg,

c = 0.5 N-s/m, and k = 1 N/m [18]

3 Fuzzy modeling of hard impacting systems

Generally, the non-linear and multi-parametric nature
of fuzzy control systems make their stability analysis a
demanding task. To find a remedy, Takagi and Sugeno
introduced a modeling approach in which a linear sys-
tem can be adopted as the consequent part of a fuzzy
rule; the so-called TS fuzzy model [35]. The TS model
they proposed, elaborated in a number of consequent
publications, is essentially described by a set of fuzzy
implications, which characterize local relations of the
system in state space. The main feature of a TS model
is to express the local dynamics of each fuzzy rule (im-
plication) by a linear state-space system model. The
overall fuzzy system is then modeled by the fuzzy
blending of these local linear system models through
some suitable membership functions. As a mathemat-
ical expression, the j th rule of the continuous-time TS
fuzzy model is formulated in the following form:

Plant Rule j : IF x1(t) is Γ
j

1 AND...AND xn(t) is Γ
j
n

THEN ẋ = Ajx(t) + Bju(t), j = 1,2, . . . , l, (5)

where Γ
j
i is a fuzzy set, x(t) ∈ �n is the state vector,

u(t) ∈ �m is the control input vector, Aj ∈ �n×n and
Bj ∈ �n×m are respectively the system matrix and the
input matrix, and l is the number of model rules. The
de-fuzzified output of (5) is represented as

ẋ(t) =
l∑

j=1

μj (x(t))(Ajx(t) + Bju(t)), (6)

where

ωj (x(t)) =
n∏

i=1

Γ
j
i (xi(t)), and

μj (x(t)) = ωj (x(t))
∑l

k=1 ωk(x(t))

in which Γ
j
i (xi(t)) is the grade of membership of

xi(t) in Γ
j
i . Basic properties of the weighting func-

tion ωj (t) are: ωj (x(t)) ≥ 0, and
∑l

k=1 ωk(x(t)) >

0, k = 1,2, . . . , l. It is clear that μj (x(t)) ≥ 0, and∑l
j=1 μj (x(t)) > 0, j = 1,2, . . . , l.
A discrete-time TS fuzzy model may also be ob-

tainable by following a similar procedure [36]. Other
techniques to allow discretization of Linear time-
varying (LTI) continuous-time TS fuzzy systems have
also been discussed, e.g. [19]. However, regardless of
the fuzzy approximation method, the TS fuzzy model
described by (6) is only able to represent smooth dy-
namical systems to arbitrary accuracy [26, 27] and
its mathematical structure is incapable of represent-
ing non-smooth dynamical equations.2 As a solution,
a synthesized TS fuzzy model which can incorpo-
rate discrete events to represent Filippov-type non-
smooth systems has been proposed by the authors
and successfully applied to DC-DC electronic con-
verters [27]. In this section, we will develop a TS
fuzzy model capable of approximating hard impact
oscillator systems to a high degree of accuracy to rep-
resent all observed nonlinear phenomena, including

2Non-smooth or piecewise-smooth systems are the terms ini-
tially coined for dynamical equations with a discontinuous right-
hand side. However, they constitute different classes of systems
(than initially defined by Filippov [13]) including flows and
maps. Here, we use the term non-smooth (dynamical) systems
for non-smooth flows only as we limit our studies to this class.
Refer to [11] for more detailed definitions and discussions.
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Table 1 Examples of
mechanical non-smooth
Filippov-type systems;
dry-friction oscillator and
mechanical impact system
with discontinuous states.
Si and Sj are denoted as
open regions of the phase
space where system
dynamics are respectively
governed by ẋ = Fi(x,μ)

and ẋ = Fj (x,μ). Σij is
the discontinuity boundary
or switching manifold

Dry friction Impact system

DoS 1 0

Description Non-smooth
Filippov-type
system with
sliding dynamics

Non-smooth
system with
discontinuous (jump)
states

Dynamics

the discontinuity-induced bifurcation (DIB) created
near the grazing event (Fig. 3a). To enable the fuzzy
model (6) to approximate both types of non-smooth
systems illustrated in Table 1,3 two functions should
be incorporated into the original TS fuzzy model (5)
and (6). First, a function ξ is composed to describe
discrete events. This function, formally defined as
m+(t) = ξ(x(t),m(t)) where m is a discrete state
variable, describes interactions between the continu-
ous and discrete states by determining the change in
m [27]. The fundamental function χ also needs to be
defined to express any discontinuity (or jump) in sys-
tem states, present in the dynamics of impact oscillator
systems. From the formal definition of this function,
x+(t) = χ(x(t),m(t)), it can be implied that χ ex-
plains the interaction between the discrete and discon-
tinuous (or jump) states of the system, a property that
cannot be found in Filippov-type non-smooth systems
(Table 1). Accordingly, we propose a TS fuzzy model
that can represent the impact oscillator system (1), (2)
as a non-smooth system (DoS of zero) as follows:
⎧
⎨

⎩

ẋ = ∑lm
j=1 μj (x,m)(Aj (m)x + Bj (m)u),

m+ = ξ(x,m),

x+ = χ(x,m),

(7)

where x ∈ Rn is the continuous state, m ∈ M =
{m1, . . . ,mN } is a discrete state (N possibly infinite).
The state space is the Cartesian product �n ×M . Each

3Normally a sliding region in Filippov-type systems can be at-
tracting or repelling. However, in case of a dry-friction oscillator
where the system flow is forward in time, a repelling sliding re-
gion is not realizable in its sliding dynamics.

local continuous dynamical function f (x,mi) is asso-
ciated with a discrete state mi ∈ M and is represented
by a specific set, which we will call a fuzzy sub-vector
field, denoted by Fmi

and described as

Fmi
=

∑

j∈{1,2,...}
μj (x,mi)

(
Aj(mi)x + Bj (mi)u

)
,

i ∈ IN = {1,2, . . . ,N}, (8)

where Aj(mi) ∈ �n×n, Bj (mi) ∈ �n and μj :�n ×
M → [0 1], i ∈ Ilm , are continuous weighting func-
tions satisfying

∑lm
j=1 μj (x,m) = 1 and lm is the num-

ber of fuzzy rules. The above representation includes
the possibility of state discontinuities by defining χ :
�n × M → �n, and the dynamics of discrete states by
defining ξ : �n × M → M . The notation m+ means
the next state of m (the event of switching from an ac-
tive fuzzy sub-vector field to another) and x+ means
the next state of x. The TS fuzzy system (7) is defined
as an autonomous system where there are no exter-
nal inputs influencing the dynamics. This may be the
case when external inputs are feedback functions of
the fuzzy continuous and discrete state.

Remark 1 Alternatively, the function ξ may be de-
scribed by a number of switch sets Si,k , which are re-
lated to ξ by

Si,k = {
x ∈ �n | mk = ξ(x,mi)

}
, i ∈ IN , k ∈ IN , (9)

where IN = {1,2, . . . ,N}. Therefore, switch sets sim-
ply describe where in the continuous fuzzy state space
a sub-vector field

Fmi
=

∑

j∈{1,2,...}
wj(x,mi)

(
Aj(mi)x + Bj (mi)u

)
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switches to another fuzzy sub-vector field

Fmk
=

∑

j∈{1,2,...}
wj(x,mk)

(
Aj(mk)x + Bj (mk)u

)

on the condition that mi �= mk . Depending on the ap-
plication, the switch sets normally represent hyper-
surfaces or hyper-planes in phase space.

Remark 2 Similarly, the function χ can be alterna-
tively described by jump sets Di , expressed as

Di = {
x ∈ �n | x+ = χ(x,mi)

}
, i ∈ IN . (10)

In practice, switch sets and jump sets co-exist in
space and time and the relation between two succes-
sive continuous fuzzy states can be defined by the ma-
trix J as

x+ = J (mi)x. (11)

In the following analysis, the matrix J can be useful
when applying zero-time mapping (2) to impact oscil-
lators.

A non-smooth impacting system normally under-
goes a discontinuous jump in the system state x =
R(x) at the switching manifold Σij , and it has, as
mentioned earlier, a DoS of zero. Even tough the lo-
cal vector fields before and after the impact are equal
F1(x) = F2(x), there is a jump in the Jacobian deriva-
tives ∂F1

∂x
and ∂F2

∂x
at x. Direct numerical simulation of

the mathematical models of such systems is at best dif-
ficult. Different formalisms using specialist software
platforms have been suggested in the literature to over-
come these problems including complementarity sys-
tems developed as part of the SICONOS project [11,
32] and differential inclusions based on variational in-
equalities [1]. Examples of these specialist software
packages include SLIDECONT, a tool developed as a
driver for AUTO’97 by Dercole et al. [10] and spe-
cialized numerical routines developed by Nordmark et
al. [30]. These high-cost, computationally expensive
software platforms for non-smooth systems are still
needed since the black-box integration routines em-
ployed by general-purpose softwares, e.g. MATLAB,
assume a high degree of smoothness for the solu-
tion and cannot therefore tackle non-smooth dynam-
ical equations.

From the simulation point of view, the main advan-
tage of the proposed general TS fuzzy modeling struc-
ture (7) is its ability to be directly solved using widely-
used integration routines already designed for smooth

systems. However, to achieve this, we first need to con-
vert system equations (1) and (2) to a continuous TS
fuzzy model as proposed by (7), and solve the equa-
tions as second-order ordinary differential equations.
In this way, the local linear models before the impact
(F1) and after the impact (F2) should be transformed
into nonlinear models (due to the state transformation
x �→ x2), so that the Jacobian derivatives ∂F1

∂x
and ∂F2

∂x
,

can then be equal and linear. The non-linear local mod-
els are then represented by the fuzzy sub-vector fields
Fmi

as suggested by (8). To further clarify this, we can
describe the TS fuzzy formalism (7) in the form of dif-
ferential inclusions ẋ ∈ f (x), where

f =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{Fm1 = ∑l
j=1 μj (x,m1)(A

j (m1)x

+ Bj (m1)u)}, if x ∈ S1,2,

{Fm2 = ∑l
j=1 μj (x,m2)(A

j (m2)x

+ Bj (m2)u)}, if x ∈ S2,1,

{Fm1 + μ(Fm2 − Fm1) | 0 < μ < 1},
if x ∈ ∂S1 ∩ ∂S2.

The resulting TS fuzzy model can then hold the ex-
istence property of an absolutely continuous solution
at the point of discontinuity (or jump) as an approx-
imative solution of the differential inclusion f . The
third term of f describing the discontinuous jump
when crossing the switching manifold (x ∈ Σ12 or
x ∈ ∂S1 ∩ ∂S2) would then hold naturally for the TS
fuzzy approximation where the model is defined as a
convex combination of the fuzzy sub-vector fields.

The model of the impact oscillator system (1), (2)
can now be derived according to the general TS fuzzy
model proposed in (7), (9), and (10) by the following
fuzzy implications (rules):

Plant Rule j : IF x2(t) is Fj THEN

ẋ =
⎧
⎨

⎩

Aj(mi)x(t) + Bj (mi)u(t), j = 1,2, i = 1,2,

m+ = ξ(x,m),

x+ = χ(x,m),

(12)

where the state vector is defined as x(t) =
[x1(t) x2(t)]T = [s(t)ṡ(t)]T and Fj represent the
fuzzy sets. The function ξ is defined based on two
discrete states m1 and m2 as follows:

ξ : m1 �→ m2,

ξ : m2 �→ m1.
(13)
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Fig. 4 Velocity and position responses with respect to time,
produced from (a) the original impacting system (� = 2.97,
F = 0.277 N), (b) the TS fuzzy model (� = 2.97, F =
0.277 N), (c) the original impacting system (� = 2.97, F =

0.276 N), (d) the TS fuzzy model (� = 2.97, F = 0.276 N),
(e) the original impacting system (� = 1, F = 1.4975 N),
(f) the TS fuzzy model (� = 1, F = 1.4975 N)

The interaction between the two states can then be ex-
pressed in terms of switch sets (9) as follows (see Re-
mark 1):

S1,2 = {
x ∈ Rn | x1(t) − σ > 0

}
,

S2,1 ={
x ∈ Rn | x1(t) − σ < 0

}
.

(14)

To obtain the fuzzy sub-vector fields Fm1 and Fm2 ,
which can switch if (14) holds, let us describe the orig-

inal impact oscillator equation (1) in canonical form as
follows:
{

ẋ1 = x2,

ẋ2 = −ω2
nx1 − 2ζωnx2 − F cos(wt),

(15)

where s(t) = x1(t) and ṡ(t) = v(t) = x2(t).
For constructing Fm1 , fuzzy set supports for the

state variables x1 and x2 are respectively chosen as
x1

1 ∈ [−0.5,0.5] and x1
2 ∈ [2l̂1,2l̂2], where l̂1 = 4.13

and l̂2 = −3.72 are the amplitude limits of the state
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Fig. 5 Comparison of the TS fuzzy model responses (dashed
line) with the original impacting system (solid line) for the oper-
ating condition � = 1 and F = 1.4975 N and initial conditions

(a) [0 0]T , (b) [0.5 1]T , and (c) [−0.5 − 1]T . Figure (d) shows
the average initial error of the TS fuzzy model for both position
(solid line) and velocity (dot-dashed line)

x2 while the system is structurally stable at F =
1.4975 N, � = 1. If we assume two fuzzy variables
z1 = x1 and z2 = x2, these can be described by fuzzy
sets as follows:

z1 = 0.5 · Γ 1(z1) + (−0.5) · Γ 2(z1),

z2 = 8.26 · Γ 3(z1) + (−7.44) · Γ 4(z1).

Since Γ 1(z1)+Γ 2(z1) = 1 and Γ 3(z2)+Γ 4(z2) = 1,
the membership functions are derived as:

Γ 1(z1) = 1

2
+ z1, Γ 2(z1) = 1 − Γ 1(z1),

Γ 3(z2) = 1

2
+ z2 − 0.4

15.7
, Γ 4(z2) = 1 − Γ 3(z2).

Therefore, the sub-system matrices for Fm1 can be
constructed as follows:

A1(m1) =
[

0 1
max
z1∈Γ 1

z1 · (−ω2
n) max

z2∈Γ 3
z2 · (−2ζωn)

]

,

A2(m1) =
[

0 1
max
z1∈Γ 1

z1 · (−ω2
n) max

z2∈Γ 4
z2 · (−2ζωn)

]

,

A3(m1) =
[

0 1
max
z1∈Γ 2

z1 · (−ω2
n) max

z2∈Γ 3
z2 · (−2ζωn)

]

,

A4(m1) =
[

0 1
max
z1∈Γ 2

z1 · (−ω2
n) max

z2∈Γ 4
z2 · (−2ζωn)

]

,

B1(m1) = B2(m1) = B3(m1) = B4(m1) =
[

0
−F

]
,

giving the following matrices when one substitutes the
respective numbers with u(t) = cos(wt) as the input
signal:

A1(m1) =
[

0 1
−0.5ω2

n −(2 · 8.26)ζωn

]
,

A2(m1) =
[

0 1
−0.5ω2

n (2 · 7.44)ζωn

]
,

A3(m1) =
[

0 1
0.5ω2

n −(2 · 8.26)ζωn

]
,

A4(m1) =
[

0 1
0.5ω2

n (2 · 7.44)ζωn

]
,
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Fig. 6 Comparison of the phase portraits of the original sys-
tem in (a), (b), (c), (d) with that of the TS fuzzy model (e), (f),
(g), (h) for the operating condition � = 1 and F = 1.4975 N

and initial conditions (a), (e) [0 0]T , (b), (f) [0.5 1]T , and (c),
(g) [−0.5 − 1]T . Figures (d) and (h) show the steady-state re-
sponses (300 s) when a stable limit cycle is observed
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B1(m1) = B2(m1) = B3(m1) = B4(m1) =
[

0
−F

]
,

To construct the second fuzzy sub-vector filed Fm2 ,
fuzzy set supports for the state variables x1 and x2 are
chosen as x2

1 ∈ [−4,0.5] and x2
2 ∈ [−7.32,8.086], re-

spectively, giving the following sub-system matrices:

A1(m2) =
[

0 1
−0.5ω2

n −(2 · 8.086)ζωn

]
,

A2(m2) =
[

0 1
−0.5ω2

n (2 · 7.32)ζωn

]
,

A3(m2) =
[

0 1
4ω2

n −(2 · 8.086)ζωn

]
,

A4(m2) =
[

0 1
4ω2

n (2 · 7.32)ζωn

]
,

B1(m2) = B2(m2) = B3(m2) = B4(m2) =
[

0
1

]
.

Now, it just remains to introduce the discontinuous
jump. This can be realized by defining the function χ

in the model (12), which can alternatively be described
by the jump sets Di in (10). Hence, the jump matrices
J (m1) and J (m2), based on zero-time velocity map-
ping (2), can be derived as

J (m1) =
[

1 0
0 −r

]
, J (m2) =

[
1 0
0 −1/r

]
,

(16)

where the coefficient of restitution r = 0.9.
The TS fuzzy model (12) is then used to study all

the nonlinear phenomena discussed in Sect. 2. To ver-
ify the accuracy of the proposed modeling method, the
time responses of the original model (1), (2), and the
proposed TS fuzzy model (12) with different forcing
function amplitudes are compared (Fig. 4) showing
very good agreement. Figures 4a and 4b show the time
responses with both systems being stable at an excita-
tion amplitude of F = 0.227 N. In contrast, Figs. 4c
and 4d show the original and fuzzy systems operating
in the chaotic region at F = 0.276 N while Figs. 4e
and 4f show the first 40 s at a different excitation am-
plitude of F = 1.4975 N. The initial 5 s time responses
for � = 1, F = 1.4975 N are shown in Fig. 5 for three
different initial conditions. The steady-state phase por-
traits of the system are also shown in Fig. 6. The qual-
itative behavior of the TS fuzzy model (12) can be
best depicted in terms of bifurcation diagrams (Fig. 7),
where at each fixed parameter value, a random number
generator is used to select initial conditions for a range

Fig. 7 The bifurcation diagrams produced from the proposed
TS fuzzy model for (a) � = 2.97 when the grazing event makes
the system chaotic, (b) � = 3 when there is no sudden transition
to chaotic behavior. The other common parameters are set as
M = 1 kg, c = 0.5 N-s/m, and k = 1 N/m (see Fig. 1)

of different points within a suitably defined sub-set of
the phase space. These results confirm the accuracy of
the TS fuzzy model (12) when compared with the bi-
furcation diagrams of Fig. 3.

4 Stability near the grazing point

Stability analysis methods for smooth TS fuzzy sys-
tems4 are dominantly established around the classi-
cal notions of stability. Stability results, especially for
chaotic systems, have been developed mainly through

4From this point on, we will use the terminology smooth TS
fuzzy system for describing TS fuzzy models with the well-
known formalism of (5) and (6) capable of approximating
smooth dynamical systems and the terminology non-smooth TS
fuzzy system for describing TS fuzzy models capable of approx-
imating non-smooth dynamical systems to an arbitrary accuracy
as proposed by the general formalism (7).
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parallel-distributed compensation (PDC) technique to
determine the rule structure of a TS fuzzy system and
realized in terms of Lyapunov’s direct method [36,
37]. The derived stability frameworks are then for-
mulated as linear matrix inequalities (LMIs) [36, 37],
which to-date have proved to be the most efficient and
systematic way to numerically search for convex con-
straints such as Lyapunov functions. The authors have
already shown [27] that the formulation of the theo-
rems based on smooth Lyapunov functions (see [22,
36] and the references therein) would end up in a con-
servative formulation even for smooth TS fuzzy sys-
tems. For non-smooth cases, one may find the use of
Lyapunov’s method to investigate the stability of equi-
libria very useful [11, 34]. However, if asymptotic sta-
bility is to be verified by finding a common Lyapunov
function V (x), which is positive definite and decreas-
ing along the trajectories for each of the vector fields
representing the system dynamics, no solution will be
realizable (see [11, 34] and all references therein). It is
therefore not surprising that there are mechanical non-
smooth systems whose stability cannot be assessed us-
ing continuously differentiable Lyapunov theory [34,
20, 11]. Therefore, with a similar argument, the au-
thors believe that any investigation of the structural
stability of limit cycles in a non-smooth model, e.g.
TS fuzzy model (12), should be based on discontinu-
ous Lyapunov functions which are piece-wise smooth
at the switching manifold. The fuzzy state space is al-
lowed to be partitioned into relaxed regions of energy
which are to be measured by local (Lyapunov) func-
tions [27]. This is crucial in avoiding a conservative
formulation of the resulting LMIs, which in turn, may
lead to false stability results. The following steps are
thus necessary in constructing an LMI framework for
the bifurcation analysis of the non-smooth TS fuzzy
model (12).

4.1 Constructing piece-wise smooth Lyapunov
functions

If F is the fuzzy state space, a region Ω ⊆ F is di-
vided into Δ detached regions. It is assumed that the
division is designed in such a way that if the trajectory
starts at an initial point in region Ω , tk k = 1,2, . . . ,
it can only pass through to another detached region if
the condition tk < tk+1 is satisfied. Let Ω be a set in
F in which both continuous and discrete states are de-
finable. The following sub-sets can then be defined:

Ωx = {
x ∈ �n | (x,m) ∈ Ω

}
,

Ωx,mi = {
x ∈ �n | (x,mi) ∈ Ω

}
, (17)

Ωm = {
m ∈ M | (x,m) ∈ Ω

}
.

Continuous fuzzy states can be included in the sets Ωx

and Ωx,mi and discrete fuzzy states can be included in
the set Ωm. If a trajectory fulfills the non-smooth TS
fuzzy system with an initial fuzzy state (x0,m0) ∈ F0

[27] and we let ε > 0, q ∈ IΔ, r ∈ IΔ, the regions Λqr

are defined as sets where the trajectory can pass from
the region Ωq to Ωr by the following:

Λqr = {
(x,m) ∈ Ω | ∃t > 0 such that

(
x(t − ε),

m(t − ε)
) ∈ Ωq and

(
x(t + ε),m(t + ε)

) ∈ Ωr,

when ε → 0
}
, (18)

which normally represents the hyper-surfaces, i.e.
switching manifolds Σij . We also need to define an-
other set to allow the trajectories to traverse from one
region to another. Thus,

IΛ = {
(q, r)|Λqr �= ∅}

is the set of tuples specifying the condition that there is
at least one point for which the trajectory can traverse
from Ωq to Ωr .

Remark 3 The matrix H(mi), i ∈ IN is defined as

H(mi) =
[

1 0
r ∂H

∂x1
1

]
,

where r is the coefficient of restitution. The purpose
of the above matrix is to impose a limit on the region
boundary defined by the set Λqr in (18). This matrix
is used in the stability analysis presented in Sect. 4.3.

Let the overall Lyapunov function V (x) be a dis-
continues function:

V (x) = Vq(x) when (x,m) ∈ Ωq (19)

where V (x) is essentially non-smooth at the region
boundaries, defined by �qr , where (q, r) ∈ IΛ. The
definition (19) is possible if we let Vq : cl5 Ωx

q →
�, Vq(x) = πq + 2pT

q x + xT Pqx,πq ∈ �, pq ∈ �n,
Pq = P T

q ∈ �n × �n, q ∈ IΔ be a (scalar) quadratic
function, locally continuous and Lyapunov in the lo-
cal region Ωq . The local Lyapunov functions Vq(x)

can be defined in matrix form as

P̃q =
[

Pq pq

pT
q πq

]
,

5cl. denotes the closure of a set.
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where P̃q , q ∈ IΔ are piecewise quadratic matrices.
Furthermore, the discontinuous Lyapunov function
(19) is piecewise smooth with respect to time since
the division (of regions) is made under the condition
tk < tk+1 for every trajectory to pass through another
region starting at an initial point in Ω . Since Vq(x) is
defined as a continuous Lyapunov function in the re-
gion Ωq , its derivative with respect to time using the
sets (17) can be expressed as

V̇q(x) =
lm∑

j=1

wj(θ,m)
∂Vq(x)

∂t

(
Aj(m)x + Bj (m)

)
,

(x,m) ∈ Ωx,mi
q , mi ∈ Ωm

q . (20)

4.2 Transforming confined conditions of regions to
unconfined LMI conditions

All conditions of the stability theorem to be presented
in Sect. 4.3 should be confined to be fulfilled in part of
the continuous fuzzy state space F , which is divided
into specific regions Ωx

q , Ω
x,mi
q and Λqr . Before for-

mulating any LMI condition, a description of how the
confined stability conditions can be substituted by un-
confined conditions is given here. This substitution can
be made possible by first representing the regions by
positive (quadratic) functions and then transforming
to unconfined conditions using the general technique
normally referred to as the S procedure [4]. In this
section, the procedure is initially expounded in gen-
eral terms and then applied to the confined conditions
of the stability theorem.

Assume that Q0(x) : �n → � is a function with un-
known variables to be determined, fulfilling the condi-
tion

Q0(x) ≥ 0 for all x in the region R. (21)

Also assume that Qk(x) : �n → �, k ∈ Is are func-
tions with known variables fulfilling the condition

Qk(x) ≥ 0, k ∈ Is for all x in the region R

Then condition (21) can be substituted with more con-
fined condition as follows:

Q0(x) ≥ 0 for all x fulfilling Qk(x) ≥ 0, k ∈ Is .

(22)

Condition (21) has thus been substituted by constraints
represented by the functions Qk(x) ≥ 0, k ∈ Is . This
substitution is illustrated by Fig. 8. For formulating

Fig. 8 The white region Ω is substituted with a region rep-
resented by semi-definite conditions xT Z1x ≥ 0, xT Z2x ≥ 0
and xT Z3x ≥ 0, where each are limited by two hyper-planes
(f a)T x ≥ 0 and (f b)T x ≥ 0

any stability condition to an LMI, the confined con-
dition (22) should be substituted with an unconfined
condition. This becomes possible by introducing addi-
tional variables δk ≥ 0, k ∈ Is . Therefore, we initially
have to consider the following lemma.

Lemma [4] Condition (22) holds if there exist δk ≥ 0
and Qk(x) ≥ 0, k ∈ Is , such that

∀x ∈ �n, Q0(x) ≥
s∑

k=1

δkQk(x). (23)

The proof is easily attainable because we initially
assume δk ≥ 0, k ∈ Is and Qk(x) ≥ 0, k ∈ Is . Hence,∑s

k=1δkQk(x) ≥ 0 for all x fulfilling Qk(x) ≥ 0, k ∈
Is .

The confined condition (21) can then be substituted
by an unconfined condition using the above lemma
while defining the following quadratic functions:

Qk(x) = xT Zkx + 2cT
k x + dk, k = 0, . . . , s, (24)

where Zk = ZT
k ∈ �n × �n and Q0, . . . ,Qs are

quadratic functions of x ∈ �n. Hence, condition (23)
can be formulated as an LMI:

x̃T

[
Z0 c0

cT
0 d0

]
x̃ ≥

s∑

k=1

δkx̃
T

[
Zk ck

cT
k dk

]
x̃ (25)

where x̃ = [x 1]T .
The great advantage of the above formulation is

that the quadratic condition x̃T
[ Z0 c0

cT
0 d0

]
x̃ ≥ 0 should
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be satisfied in just a part of F , meaning that the ma-

trix
[ Z0 c0

cT
0 d0

]
is positive semi-definite. This rules out the

possibility of a conservative formulation since at least

all the quadratic conditions x̃T
[ Zk ck

cT
k dk

]
x̃ ≥ 0, k ∈ Is

are fulfilled in a part of F .

Remark 4 The substitution of condition (22) using the
lemma may end up in a conservative LMI formulation.
Nevertheless, in case of s = 1, the converse is true on
the condition that there is some x to fulfill Q1(x) > 0.

Remark 5 If we confine Qk(x) as Qk(x) ≥ 0, it is al-
ways theoretically possible to represent an arbitrary re-
gion Ω by a quadratic condition Qk(x) ≥ 0. However,
in practice, the substitution is made in such a way that
the states fulfilling all the conditions Qk(x) ≥ 0, k =
1, . . . , s transcend the original region Ω . Condition
(22) is more relaxed than condition (21). Even though
in some cases, the conservative formulation may be
found feasible, finding a more relaxed formulation is
essential for searching a feasible LMI solution.

Remark 6 If the region Λqr is to be represented (using
the lemma) as quadratic conditions Qk(x) = 0, k ∈ Is ,
the constraints δk ≥ 0, k ∈ Is can be canceled as the
lemma holds regardless of the sign of δk, k ∈ Is .

The necessary step toward formulating LMI sta-
bility conditions is optimizing the parameters in the
quadratic function (24) in such a way that the set of
states fulfilling all Qk(x) ≥ 0 comprises the set Ω .
First, assume that the arbitrary region Ω encompass-
ing the origin is given by a set of states, limited by two
half-planes
(
f a

)T ≥ 0 and
(
f b

)T ≥ 0 (26)

then the region Ω can be represented by

xT Z1x ≥ 0, where Z1 = f a
(
f b

)T + f b
(
f a

)T
.

(27)

The symmetrical property of the above condition is
that both x1 and −x1 can fulfill the inequality (27).
A region Ω can be substituted by quadratic inequali-
ties (27) represented by only two hyper-planes on the
condition that the dimension n = 2. However, if the
number of dimensions is greater than two (n > 2),

(27) should be represented by more than two hyper-
planes (all possible combinations of two different half-
planes). This results in σ(σ−1)

2 different quadratic in-
equalities, where σ is the number of half-planes. Since
xT Zkx ≥ 0 is true for all states, it is reasonable to
eliminate the same combination of half-planes.

If the region Ω is limited by several half-planes, it
is not possible for the region to be accurately repre-
sented by one quadratic inequality xT Zkx ≥ 0, even
considering the symmetric property, i.e. if x ∈ Ω ⇒
−x ∈ Ω . The set of states fulfilling xT Z1x ≥ 0 for
a quadratic inequality obtained by any combination
of two half-planes representing Ω would be strictly
larger than Ω . In fact, there exist a number of suit-
able sets of states fulfilling the inequality xT Z1x ≥ 0.
Therefore, all acceptable combinations should be con-
sidered in order to identify the most suitable set. The
variables δk are determined by solving the resulting
LMI problem (25), if feasible. The quadratic inequal-
ity substituted by the region Ω is then known.

Now, in case the region Ω does not encompass the
origin, the half-plane limiting the region is defined as

f T x + g ≥ 0, (28)

which can be represented by the quadratic inequalities
[4]:

x̃T

[
0 f

f T 2g

]
x̃ (29)

where ‘0’ in the upper left corner represents an n × n

zero matrix. If the region Ω is limited by a set given
by more than two half-planes, as in the previous case,
all possible combinations should be considered. To be
more specific, if the half-planes are given by
(
f a

)T
x + ga ≥ 0 and

(
f b

)T
x + gb ≥ 0,

then the resulting possible quadratic inequalities would
be:

x̃T

[
f a(f b)T + f b(f a)T gbf a + gaf b

gb(f a)T + ga(f b)T 2gagb

]
x̃, (30)

x̃T

[
0 f a

(f a)T 2ga

]
x̃, (31)

x̃T

[
0 f b

(f b)T 2gb

]
x̃, (32)

where x̃ = [x 1]T .
For the boundary region Λqr , which represents a

hyperplane (or hyper-surfaces), the substitute quadratic
forms are defined as quadratic equalities as follows:

f T x + g = 0, (33)



1306 K. Mehran et al.

where f = [f 1 . . . f n]T ∈ �n and g ∈ �. The equiva-
lent representation of (33) is

2
(
λT x + λn+1)T (

f T x + g
) = 0, (34)

where λ = [λ1, . . . , λn]T ∈ �n and λn+1 ∈ � are arbi-
trary extra variables. The equality (34) can be alterna-
tively stated as

x̃T

[
λ

λn+1

][
f T g

]
x̃ + x̃T

[
f

g

][
λT λn+1]x̃

=
n+1∑

k=1

λkx̃T Z̃kx̃ = 0,

where

Z̃k = ak
[
f T g

] + [
f T g

]T (
ak

)T
, (35)

and ak is a column vector with n elements such that

ek(i) =
{

1, i = k,
0, i �= k,

where i means the ith element of ak .

4.3 LMI stability conditions

The final step in investigating the stability of the graz-
ing orbit is to formulate the stability theorem as LMIs.
The stability analysis is based on the non-smooth TS
fuzzy model of the hard-impact oscillator developed in
Sect. 3.

Theorem 1 If there exist piecewise quadratic matri-
ces P̃q , q ∈ IΔ and constants α,β , μ

q
k , ν

qij
k , η

qr
k , then

the fixed point of the limit cycle is structurally stable
in the sense of Lyapunov if there is a solution to min β

subject to the following conditions:

– α > 0, β > 0, μ
q
k ≥ 0

–
[

α 0
0 0

] + ∑sq
k=1 μ

q
k

[ Z
q
k c

q
k

(c
q
k )T d

q
k

] ≤ [ Pq pq

pT
q πq

]
, q ∈ IΔ

–
[ Pq pq

pT
q πq

] ≤ [
β 0
0 0

] + ∑sq
k=1 μ

q
k

[ Z
q
k c

q
k

(c
q
k )

T
d

q
k

]
, q ∈ IΔ

– (q, i, j) ∈ IΩ, q ∈ IΔ

[
Aj(mi) Bj (mi)

0 0

]T [
Pq pq

pT
q πq

]
+

[
Pq pq

pT
q πq

]

×
[

Aj(mi) Bj (mi)

0 0

]

+
sqij∑

k=1

ν
qij
k

[
Z

q
k c

q
k

(c
q
k )

T
d

q
k

]
≤ 0

–
[

J (mi) 0
0 1

]T [
Pr pr

pT
r πr

][
J (mi) 0

0 1

]

≤
[

Pq pq

pT
q πq

]

+
[

H(mi) 0
0 1

]T [
Pq pq

pT
q πq

][
H(mi) 0

0 1

]

−
sqr∑

k=1

η
qr
k

[
Z

qr
k c

qr
k

(c
qr
k )

T
d

qr
k

]
, (q, r) ∈ IΛ

The proof of the above theorem is similar to that
presented in the previous publication [27] except for
the last LMI condition. The extension of the proof
to include the complexity of discontinuous states
when crossing the switching manifold is given in the
Appendix.

An interesting feature of the above stability theo-
rem, formulated as an LMI problem, is the ability to
search for a feasible solution that yields a better esti-
mate of exponential convergence [27]. Therefore, the
feasibility of any solution is found through optimizing
a minimum value of β . All the other variables α, μ

q
k ,

ν
qij
k , η

qr
k and the matrices Pq , pq , πq , q ∈ IΔ need

to be determined by solving the above theorem as an
LMI (optimization) problem.

As illustrated in Sects. 2 and 3, in the event of
a grazing bifurcation, there is an abrupt change to a
much larger chaotic orbit close to the grazing point
arising from the stretching of the phase space [8, 11].
Assuming the same parameters (see Sect. 2) for the
non-smooth TS fuzzy model, the system loses its sta-
bility at an excitation amplitude of 0.2759 N to an un-
stable chaotic orbit as evident from Fig. 7a. However,
if we change the parameter value of m to an integer
value, say 3, the system preserves the structural stabil-
ity of its local orbit, as seen in the bifurcation diagram
of Fig. 7b. To verify the efficacy of the LMI formu-
lation of Theorem 1, it is used to predict the onset of
the unstable chaotic behavior by investigating the ex-
ponential stability of the grazing limit cycle as an op-
timization problem.

Following the S -procedure (see Sects. 4.1 and 4.2),
the fuzzy state space is partitioned into regions Ωq

and Ωr , and a boundary region �qr which divides the
two regions as it represents the discontinuity bound-
ary Σij . Solving the LMI problem for m = 2.97 and a
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forcing function amplitude F = 0.2751 N, yields the
feasible solution:

P̃1 =
⎡

⎣
−422.546 6.7878 −0.2307

6.7878 −335.691 0.2655
−0.2307 0.2655 −423.048

⎤

⎦ ,

P̃2 =
⎡

⎣
7.1287 0.1781 −2.7433
0.1781 7.1287 −3.3345

−2.7433 −3.3345 −706.9402

⎤

⎦

with an optimum value of β = 193.3704. This simply
proves that the limit cycle of the system (12) is ex-
ponentially (structurally) stable as can be seen from
Fig. 7, where the local orbit is in the stable period-1
region. Changing the parameters to m = 3 and F =
1.4982 N also results in a feasible solution as above,
proving the grazing orbit is stable. Applying Theo-
rem 1 for any operating point in the chaotic region
(from F = 0.2760 N to F = 0.2763 N, m = 2.97), cf.
(Fig. 7a), results in an infeasible solution, confirming
the instability of the grazing orbit as expected after the
grazing bifurcation.

As pointed out in the Introduction, the existing ap-
proach for studying the stability of periodic solutions
in impacting systems is zero-time discontinuity map-
ping (ZDM), in which a discrete-time stroboscopic
Poincaré map is synthesized around the limit cycle in
question. The Jacobian of the discrete map can then
be employed to verify the stability of the limit cycle.6

An outline including an example of this approach for
hard-impact oscillators can be found in [11]. It is well
known that this approach suffers from the square-root
singularity problem when studying the grazing orbit.
Some of the Jacobian elements of the Poincaré map
contain an inverse square-root function causing the Ja-
cobian to assume infinite values near the grazing con-
dition where the square-root terms approach zero [11,
28, 29]. To be more exact, the Jacobian of the zero-
discontinuity map (ZDM) can be derived as7

JZDM = I + √
2a(x∗) W(x∗)Hx

2
√−Hmin

, (36)

where Hmin is the minimum value of H(ϕ(x)) at the
grazing point, Hx = ∂H(x)

∂x
and a(x∗) is the acceler-

ation of the flow ϕ at the grazing point8 (Fig. 2b).

6The system is stable if the multipliers of the Jacobian of the
linearized discrete map lie inside the unit circle.
7The letter J in this equation stands for the Jacobian of the stro-
boscopic map and should not be confused with the matrix J as
presented in (11).
8For a complete derivation of JZDM please refer to [11].

The term
√−Hmin explains the square-root singularity

problem already discussed.
Using our approach, the fuzzy state space should

be divided into finer regions in order to find a solu-
tion near grazing. For example, if we try four region
partitions, the discontinuous Lyapunov function (19)
is then defined as V (x) = Vq(x), (x,mi) ∈ Ωq, q =
1,2,3,4, i = 1,2. This further partitioning actually
reduces the possibility of a conservative LMI formu-
lation very near the grazing point (m = 2.97 and F =
0.2757 N) resulting in a feasible solution as given be-
low with an optimum value of β = 241.29:

P̃1 =
⎡

⎣
−422.4312 8.7087 −0.2833

8.7087 −335.7263 0.3126
−0.2833 0.3126 −422.9401

⎤

⎦ ,

P̃2 =
⎡

⎣
9.2904 0.2321 −4.3017
0.2321 9.2904 −4.3548

−4.3017 −4.3548 −706.8930

⎤

⎦ ,

P̃3 =
⎡

⎣
6.7425 0.1684 −3.4002
0.1684 6.7425 −3.5557

−3.4002 −0.3557 −706.9479

⎤

⎦ ,

P̃4 =
⎡

⎣
−422.1627 8.4460 −0.2702

8.4460 −335.6612 0.3301
−0.2702 0.3301 −423.0231

⎤

⎦ .

The above matrices demonstrate how the prob-
lem of infinite stretching of the phase space near the
grazing event can be overcome by finer partitioning
when applying the proposed LMI stability conditions
in Theorem 1.

5 Conclusion

A novel TS fuzzy formalism for modeling impact-
oscillator systems is suggested. The proposed mod-
eling structure is synthesized to include the dynam-
ics of discontinuous (state) jumps when crossing the
switching manifold and take into account the unique
non-linearities which characterize impacting dynam-
ics close to the grazing event. It has been shown that
the non-smooth TS fuzzy model can well represent all
the observed non-linear behaviors in impacting sys-
tems including all grazing dynamical events.

Based on the proposed non-smooth TS fuzzy
model, a Lyapunov framework is further proposed
for studying the stability of the grazing orbit. Non-
smooth Lyapunov theory, as a natural choice for non-
smooth model-based analysis is employed and formu-
lated as linear matrix inequality (LMI) conditions to
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be solved by numerical interior-point methods. The
stability conditions have been shown to be able to ac-
curately predict the onset of the sudden change to a
large chaotic attractor, induced by a grazing event. The
analysis provides a new tool for the qualitative study of
hard impacting systems. Using readily-available con-
vex optimization solvers, the square-root singularity
problem near the grazing event associated with the
discrete-mapping approach can be avoided, allowing
the onset of the grazing bifurcation to be located.

Appendix

Proof of Theorem 1 It is already known that the dis-
continuity boundary Σ is the zero set of the smooth
function H . If we assume the set ∂S+

1 = {x : ∂H(x)
∂x1

}
and the function ζ ∈ ∂S+

1 , which is defined as ζ : x �→
rx, then the last condition of stability can be written in
the sense of Lyapunov as

(x,mi) ∈ Λqr,

Vr

(
χ(x,mi)

) ≤ Vq(x) + V
(
ζ(x,mi)

)
,

(q, r) ∈ IΛ.

Following the procedure stated in Sect. 4, the above
condition can be recast on LMI as given in Theorem 1.

Since the continuous fuzzy states (x,mi), i =
1,2, . . . ,N can become discontinuous without pass-
ing to another state space fuzzy region Ωq and with-
out changing to the next discrete state mi , the switch-
ing manifold can be represented as the region Λqq for
such states. Moreover, due to state discontinuities, if
Λqr �= 0, Ωq must not be a neighboring set to Ωr .

It is necessary to assume that for all the conditions
in the theorem, there is a finite number of discontin-
uous states in finite time. This implies that the states
defined by the function χ (Remark 2), cannot undergo
consecutive discontinuous jump in an infinite man-
ner. �
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