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Abstract—The application of a novel Takagi–Sugeno (TS) fuzzy-
model-based approach to prohibit the onset of subharmonic insta-
bilities in dc–dc power electronic converters is presented in this
paper. The use of a model-based fuzzy approach derived from an
average mathematical model to control the nonlinearities in power
electronic converters has been reported in the literature, but this is
known to act as a low-pass filter, thus ignoring all nonlinear phe-
nomena occurring at converter clock frequency. This paper shows
how converter fast-scale instabilities can be captured by extending
the TS fuzzy modeling concept to nonsmooth dynamical systems
by combining the TS fuzzy modeling technique with nonsmooth
Lyapunov stability theory. The new method is applied to the cur-
rent-mode-controlled boost converter to demonstrate how the sta-
bility analysis can be directly applied by formularizing the stability
conditions as a numerical problem using linear matrix inequalities.
Based on this methodology, a new type of switching fuzzy controller
is proposed. The resulting control scheme is able to maintain the
stable period-one behavior of the converter over a wide range of
operating conditions while improving the transient response of the
circuit.

Index Terms—DC–DC converter, linear matrix inequality
(LMI), nonsmooth Lyapunov theory, Takagi–Sugeno (TS) fuzzy
approach.

I. INTRODUCTION

N ONSMOOTH phenomena play an important role in many
problems in applied science and engineering. Nonsmooth

dynamical systems are modeled by interacting continuous and
discrete-event systems. Examples can be found in mechanical
systems subjected to unilateral constraints, Coulomb friction or
impacts, switching electronic circuits, motion-control systems,
computer disk systems, and even enhanced technologies like un-
manned aerial vehicles and robotics. In control theory, they fre-
quently appear when discontinuous control laws are involved.
Power electronic circuits are considered as archetypal examples
for studying the abundance of nonlinear phenomena occurring
in this class of systems. From the stability analysis and con-
trol point of view, the mathematical study of switching power
converters is not easy to tackle, since the resulting models are
dynamical systems whose right-hand sides are not continuous
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or not differentiable. The most widely used approach to study
nonlinearities in switching-power-converter circuits is discrete
nonlinear modeling [1]–[4], which is mainly focused on ex-
amining periodic orbits and their stability instead of the theo-
retically well-developed stability of equilibria. Nonlinear map-
based modeling was proposed by Hamill et al.[5] following
the early work on sampled-data modeling and is commonly re-
ferred to as the Poincaré map method because of the sampling
of the state variables at the intersection point of the trajectory
with the Poincaré surface [1], [6]. Another method is trajec-
tory sensitivity analysis applied to power converters with the
help of a discrete–algebraic–differential model. Trajectory sen-
sitivity analysis examines how the trajectory of the system in
state space will respond if the initial condition or other param-
eters are slightly perturbed [7], [8]. In an alternative approach,
Floquet theory has also been used to study the stability of system
trajectories by deriving the absolute value of the eigenvalues of
the monodromy matrix (i.e., the so-called Floquet multipliers
of the system) [9]–[11]. The idea of an auxiliary state vector
has also been proposed to simplify the stability analysis when
using the well-known Poincaré approach [12]. Although all of
the aforementioned methodologies have been successful in pro-
viding an insight into fast-scale instabilities of power electronic
converters, they cannot be easily applied to design suitable con-
trollers to suppress these nonlinear patterns. The use of the aver-
aged model [1] technique is problematic since it cannot take into
account any subharmonic or chaotic behavior that may occur at
the switching instants. Different classes of chaos-control strate-
gies based on reliable discrete nonlinear modeling methods [1],
[13]–[18] have also been proposed over the years. The imple-
mentation of these strategies is still not widely adopted since
they are vulnerable to noise and suffer from a high-computa-
tion-time requirement [14].

In the search for efficient nonlinear control strategies, the
Takagi–Sugeno (TS) fuzzy-model-based control approach inte-
grated with Lyapunov stability analysis has attracted much at-
tention in the past 15 years. Tanaka and Sugeno [19] were the
first to formulate the Lyapunov stability condition as a linear
matrix inequality (LMI) problem for the stability analysis of
TS fuzzy systems. They studied the stability of (discrete-time)
fuzzy systems consisting of a weighted sum of linear subsys-
tems resulting from the modeling of a smooth nonlinear dy-
namical system. The weighting functions were positive scalar
functions whose sum was assumed to be equal to unity for all
linear subsystems and whose stability is ensured if there exists a
common quadratic Lyapunov function for all linear subsystems
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[19]. Since the publication of this seminal paper, there has been
considerable amount of research to approximate complicated
nonlinear dynamical equations by TS fuzzy systems and for-
malize the stability analysis of that fuzzy representation based
on smooth Lyapunov theory as an LMI problem [20]–[24].

The TS fuzzy approach, either model based or non model
based, has already been applied to control power electronic con-
verters [25], [26]. One of the main drawbacks of these previous
attempts is the derivation of the fuzzy model from the average
dynamical model of the converter, thus ignoring all converter
fast-scale instabilities as outlined previously. A TS fuzzy con-
troller based on such a model [25], while demonstrating satis-
factory transient performance, cannot predict the nonlinear phe-
nomena occurring at fast timescale [1] and cannot restrain the
resulting unstable behavior. On the other hand, applying the
non-model-based TS fuzzy control approach [26] is subject to
the chronic criticism of black-box design for having no rigorous
mathematical stability analysis even if it is able to preserve the
nominal period-one operation of the circuit. Addressing this
problem, this paper presents a novel and comprehensive anal-
ysis to synthesize a TS fuzzy model for an example nonsmooth
dynamical system—the current-mode-controlled converter—to
thoroughly accommodate the discontinuous switching of the
converter. The resulting TS fuzzy model is then able to represent
all nonlinear phenomena that take place at clock frequency, in-
cluding period-doubling bifurcations and chaos. This paper also
provides a framework for the stability analysis of the proposed
nonsmooth TS fuzzy model of the dc–dc boost converter based
on discontinuous Lyapunov functions. The search for Lyapunov
functions is formulated as LMIs to make the procedure auto-
matic through interior point methods. Discontinuous Lyapunov
functions play a pivotal role in the stability analysis of non-
smooth dynamical systems [27] and the relaxation of the con-
servative formulation of stability conditions. There are cases in
variable-structured systems [28], [29], where continuous Lya-
punov functions have been used but only with the skipping of the
nonsmoothness of the trajectory. There have also been reports
on the use of nonsmooth Lyapunov functions in generic hybrid
systems [30]–[32]. However, this paper is the first to apply the
nonsmooth Lyapunov approach to the stability analysis of the
TS fuzzy representation of a power electronic converter. We
demonstrate how the formulation of the infeasibility of stability
conditions as LMIs can predict the onset of a period-doubling
bifurcation.

The strength of the proposed TS modeling and stability anal-
ysis is demonstrated by designing a TS fuzzy switching control
strategy to curb the onset of the fast-scale instabilities in the cur-
rent-mode-controlled boost converter. Based on the developed
stability conditions and the fuzzy gain-scheduling concepts, the
new controller is designed to achieve the best slow-scale per-
formance while substantially extending the normal period-one
operating region of the converter. Stability robustness issues
arising from uncertainties in the modeling of switching phys-
ical systems are also discussed.

II. BOOST CONVERTER AND ITS MATHEMATICAL MODEL

The current-mode-controlled boost converter circuit (Fig. 1)
is a nonsmooth affine system governed by two sets of linear dif-

Fig. 1. Boost converter under current-mode control.

ferential equations pertaining to the ON and OFF states of the
controlled switch. If the output voltage and the inductor cur-
rent are taken as state variables, the state equations during the
“ON” period can be defined as

(1)

and during the “OFF” period, the equations are

(2)

where , , , and are the parasitic resistances of the
inductor, capacitor, diode, and switch, respectively. In a boost
converter, the output voltage is always higher than the input
voltage. When the controlled switch is turned on, the current
through the inductor increases. When the controlled switch
is turned off, the polarity of the inductor voltage changes, re-
ducing the inductor current and charging the output capacitor to
a voltage higher than the input voltage. We assume continuous
conduction mode, where the clock period and the inductor
value are such that the inductor current never falls to zero [1].

When switch is closed, the current through the inductor
rises, and any clock pulse arriving during this period is ignored.
Switch opens when the current reaches a reference value
and closes upon the arrival of the next clock pulse. The normal
operation of the converter referred to period-one operation can
be seen in Fig. 2. The control action in the th clock cycle [26]
is given by

(3)

where denotes the th sampled input current and the duty
cycle is the ratio between the th ON time and the clock
period .

Variation in system parameters (for example, input voltage)
can lead to border-collision bifurcation and chaos [1], [33], as
shown in Fig. 3. In Section III, the converter is modeled by TS
fuzzy approach in a way that allows all fast-scale instabilities
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Fig. 2. Nominal period-one operation of the boost converter. (a) Inductor cur-
rent and (b) output voltage. The nominal values for the parameters are as fol-
lows: � � �� V, � � � A, � � �� mH, � � ��� �F, � � �� 	,
� � ��� 	, � � ��� 	, � � ��� 	, � � ����	, and clock frequency
is 10 kHz.

Fig. 3. Bifurcation diagram of the boost converter varying input voltage, using
switch-on sampling with conventional peak-current-controlled scheme.

to be accurately studied. For this purpose, the state matrices (1)
and (2) are expressed as follows:

(4)

III. TS FUZZY-SYSTEM MODELING FOR ANALYZING

NONSMOOTH DYNAMICAL SYSTEMS

The fuzzy-system identification and approximation first ap-
peared in the seminal work of Takagi and Sugeno [34] and ex-
tended to the application of controller design and stability anal-
ysis in [19]. The model is composed of a fuzzy IF–THEN rule
base that partitions a space—usually called the universe of dis-
course—into fuzzy regions described by the rule antecedents.
The consequent of each rule is usually a simple functional
expression . A common format of a rule is as
follows:

The vector contains the premise variables and may
be a subset of the independent variables . Each
premise variable has its own universe of discourse that is
partitioned into fuzzy regions by the fuzzy sets describing
the linguistic variable . The premise variable belongs

to a fuzzy set with a truth value given by the membership
function for , where is
the number of fuzzy sets for premise variable . The notation

and refers to the linguistic variable and its member-
ship function, respectively, that correspond to the premise
variable in rule , i.e., and

.

The truth value (or activation degree) for the complete
rule is computed using the aggregation operator AND, also
called a t-norm, often denoted by ,

. By using a simple
algebraic product, the truth value reads .
The degree of activation for rule is then normalized as

where is the number of rules. This normal-
ization implies that . The response of a TS
model, for a given and , is a weighted sum of the consequent
functions which reads

The weighting functions are then denoted as interpolation
functions because they are used to interpolate local models. It
has been shown that a TS fuzzy model of the type

(5)

with the rules and membership functions just explained can
approximate any smooth nonlinear function and its first-order
derivative [35]. Furthermore, it has been shown [36] that
an affine TS system may also be able to approximate the
second-order derivatives of a smooth nonlinear function. The
boost converter is a nonsmooth or piecewise smooth dynamical
system and can generally be described by an equation of the
form:

for
for

...
for

(6)

where is a system parameter, is a continuous input, and ,
, etc., are different regions in the state space, separated by

dimensional surfaces given by an algebraic equation of
the from , called switching manifolds. The applica-
tion of the fuzzy system modeling of type (5) to the nonsmooth
model of the converter calls for modification of the TS fuzzy
model (5) which is unable to represent discrete events. Asyn-
chronized discrete-time discrete-state systems or so-called dis-
crete-event systems are commonly described by an equation of
the form , where is the discrete-state
variable, is the discrete input, and is a function describing
the change of . The input takes values in a finite set , and
the elements in are commonly called events [37], [38]. In a
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nonsmooth system (6), both continuous and discrete states in-
fluence each other’s behavior, a property that a fuzzy model of
the form (5) cannot satisfy.

In a rigorous mathematical sense, the fuzzy model (5) can
satisfy the local Lipschitz property, which is basically a smooth-
ness requirement since it is implied by continuous differentia-
bility.1 Nevertheless, systems with discontinuous nonlinearities
do not satisfy the Lipschitz property at the points of disconti-
nuity in the sense of the definition of Lipschitz condition [7],
[39]. Hence, they demand a fuzzy modeling method that ex-
plains the behavior of the system at the points of discontinuity
as well as holding the existence (and uniqueness) of the ap-
proximative solution. For those reasons, a new fuzzy modeling
method is synthesized to represent all the nonlinearities in the
converter as follows:

(7)

where is the continuous state,
is a discrete state ( possibly infinite),
, , ,

, are continuous weighting functions satisfying
, and is the number of fuzzy rules. The

state space is the Cartesian product . The function
describes the dynamics of the discrete

state. The notation means the next state of . The model
(7) describes a nonautonomous system in which an external
input (for example, the controller clock signal) affects the
dynamics of the system.

Each discrete state is associated with a spe-
cific fuzzy subsystem ,

, or, in general, with a specific set of sub-
systems ,

, which we call subvector field
mainly because it is the fuzzy representation of vector field

in the fuzzy state space . Changing the value of
results in a switching to another specific subvector field

, ,
describing the continuous evolution. The discontinuities in
are modeled by subvector-field switching because it implies
abrupt changes.

Remark 1: Moving from one discrete state to another can be
described by a number of switch sets expressed as

(8)

The switch sets define the change of discrete state to
in the continuous fuzzy state space , where . The
switch sets can often represent hypersurfaces (regions with dim

)
To ensure the ability of the proposed fuzzy modeling method

to represent fast-scale switching events and the ensuing instabil-
ities in the converter, a TS fuzzy model described by (7) and (8)
must be obtained. Based on the state-space model of the system

1We mean locally Lipschitz, if the existence of a unique solution of function
� from a given initial point at some initial time � is only guaranteed over an
interval �� � � � � � where � � � may be very small [7].

(4), the boost converter can be represented by a TS fuzzy model
with the following rules.

1) Plant Rule : IF is THEN

;
(9)

where ( ) are fuzzy sets, ,
,

as in (4), as in (4), and two discrete
states are defined as . Changing between
two discrete states can be expressed by the switch sets

(10)

where is the duty ratio which is calculated from (3) at each
clock period and s. The membership functions
are defined as follows:

where and is selected from the stable
fixed point of the original system, which is an intersection point
of the limit cycle with the Poincaré map (see [1] and [10] for the
detailed calculation using the Newton–Raphson method). Con-
sidering in the derivation of the membership functions
helps minimize the delay at the switching instances, which may
be caused by the fuzzy approximation.

Fig. 4 shows the time responses of the original system under
current-mode control and the one modeled using the proposed
fuzzy approach under different operating conditions, showing
very good agreement.

No delays are introduced by the TS fuzzy model as compared
with the original system, as demonstrated by the time responses
shown in Fig. 4(a)–(h). The TS fuzzy model also preserves the
qualitative behavior of the original system as the supply voltage
is varied, as shown by comparing the two bifurcation diagrams
in Figs. 3 and 5.

IV. EXPONENTIAL STABILITY ANALYSIS

In this section, we present the basic stability conditions for
smooth TS systems of the form which is
assumed to have been obtained through some fuzzy modeling
technique [40]. The following theorem states a well-known suf-
ficient condition for the asymptotic stability of polytopic sys-
tems [41] of the aforementioned form.

Theorem 1: The system is asymptoti-
cally stable if there exists a matrix such that

(11)

The proof can be found in [19] and [41] by considering the
smooth quadratic Lyapunov function candidate .
From the Rayleigh–Ritz theorem [41], we have

(12)
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Fig. 4. System responses. (a) Period-one behavior using original system
�� � �� V�. (b) Period-one using proposed TS fuzzy model �� � �� V�.
(c) Period-two behavior using original system �� � �� V�. (d) Period-two
behavior using proposed TS fuzzy model �� � �� V�. (e) Period-four
behavior using original system �� � �� V�. (f) Period-four behavior using
proposed TS fuzzy model �� � �� V�. (g) Chaotic behavior using original
system �� � �	 V�. (h) Chaotic behavior using proposed TS fuzzy model
�� � �	 V�.

where and denote the minimum and maximum
eigenvalues, respectively. Due to the convex combination in

, we also have

(13)

The last two equations fulfill the assumptions of [7, Corollary
3.8], which prove that the fuzzy system is exponentially stable
given the condition in Theorem 1. In fact, using a continuous
quadratic Lyapunov function is the most widely adopted tech-
nique for proving stability for smooth polytopic systems. The
reason is that the search for a common positive definite can
be easily automated using efficient convex optimization algo-
rithms for solving systems of LMIs [7], [42]. The purpose of
this section is to develop a simple but mathematically rigorous
theorem based on nonsmooth Lyapunov functions for the sta-
bility analysis of the boost converter represented with TS fuzzy
models (9).

The following assumptions of the TS fuzzy system of the gen-
eral form (7) are made in the stability analysis.

1) It is assumed that each subvector field satisfies a local Lip-
schitz condition. This means that the local existence of a
unique solution is guaranteed for each discrete state [7].
However, global existence of the trajectory can only be

guaranteed by some further knowledge of the system be-
havior, cf. [7].

2) It is assumed without loss of generality that the origin is an
equilibrium point to (6). This does not necessarily mean
that for the whole region and, conse-
quently, for all discrete states .

As stated in Section I, existing stability results require the
existence of a common quadratic Lyapunov function for all
linear subsystems which have to be valid for all states [19],
[43]. However, even for smooth dynamical systems represented
by TS fuzzy models, finding such a common smooth Lyapunov
function is very conservative while the system may be actually
stable [44]. To relax the conservativeness, we make it possible
to have different representations (7) in the different regions of
the fuzzy state space in addition to bringing the nonsmooth
Lyapunov functions into play. Therefore, we let the fuzzy state
space be partitioned into detached regions (which
means that the partitioning satisfies and

, ). It is also assumed that, if the trajectory
starts from an initial point in , , , it can pass
through to another region on the condition that is strictly
less than . Let be a set of continuous states for which
the trajectory , with initial states (initial
fuzzy states will be denoted by where consists of
all initial combinations of the states that may occur) pass from

to , i.e.,

such that
(14)

Note that it is necessary that and are neighboring sets if
. Furthermore, is given by hypersurfaces. However,

this is not sufficient, since the trajectory must also pass from one
region to another. Let

(15)

which is a set of tuples indicating that there is at least one point
for which the trajectory passes from to . Let us define

, , as a (scalar) continuous function
which represents the system’s (abstract) energy in region (

denotes the closure of a set, which is the smallest closed set
containing the set). Hence, the overall energy can be defined as

(16)

where is a discontinuous Lyapunov function at the neigh-
boring regions , . Considering the assumption of

for every trajectory with an initial point in , is
piecewise continuous as a function of time. As is assumed
to be continuously differentiable on , . Using (7),
the time derivative of is

(17)

which depends on the discrete state .
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To end up with an LMI problem, the candidate Lyapunov
function will be piecewise quadratic, meaning that each local
Lyapunov function has the structure

(18)

where , , and , .
By defining

(19)

can be written as

(20)

Now, by defining where and

, , we state the stability

theorem as follows.
Theorem 2: The fixed point is exponentially stable in the

sense of Lyapunov, if there exist , and constants
, , and , such that the following are satisfied:

1) , , .
2) , ,

, .
3) , , .
The proof of this theorem can be found in the Appendix.
Remark 2: Note that, in the case of a nonunique definition

of the next discrete state, the conditions for the energy to
be nonincreasing must be valid for all possible subvector-field
switches. For instance, if the discrete state is changed on a
surface from to or , the energy has to decrease for
both these possibilities.

The aforementioned stability conditions are confined to be
satisfied in a part of continuous state space. The first condition
is restricted to the region , the second to the region , and
the third to . It is possible, by expressing the regions by pos-
itive (quadratic) functions and employing an -procedure [41]
technique, to substitute the confined conditions with unconfined
conditions. In the following analysis, this procedure is first ex-
plained in general terms and then applied to the confined condi-
tions in the stability theorem.

Let be quadratic functions of the variable
of the form:

(21)

where . Consider the following condition:

(22)

In our case, the first two conditions in the stability theorems are
of the form

(23)

where is a region and is the corresponding
condition in the region. By finding quadratic functions

, such that

Clearly, if (22) is satisfied, so is (23). The extreme case is to
let in the entire state space; nevertheless, specifying
a larger than necessary should
be avoided, since this conservatism may result in not finding
the solution for the original condition (23). By including in
a region specified by quadratic functions, we can replace the
confined condition (22) by an unconfined condition as follows.

Lemma [41]: If there exist , , such that

(24)

then (22) holds. Hence, by introducing additional variables
, , condition (23) has been transformed into an LMI as

(25)

The replacement of (22) by the Lemma may be conservative.
However, it can be shown that the converse is true in case of
single quadratic form, i.e., [41]. Applying the stability
conditions, the region partitioning , , should be rep-
resented by a single quadratic form. Then, (22), (23), and the
Lemma are equivalent. As the regions , are given
by hypersurfaces (region with dim ), they can be defined by

, , where has the form (21). In this
case, there is no requirement for the different , , to be
greater or equal to zero in the Lemma, since the Lemma holds
despite the sign of these constants. Nonetheless, if some switch
surface cannot be exactly described by , ,
then it is possible to conservatively describe such a switch sur-
face by larger switch regions, cf. the discussion after (23). Now,
by assuming that , where , are given by ,

, and the regions , where , are given by
, , and by substituting the conditions given

in the different regions by the condition on the form of (25), the
LMI problem is reformulated as follows.

1) LMI Problem: If there exist , where , and con-
stants , , , and and if there is a solution
to min subject to

(26)

then the fixed point is exponentially stable in the sense of Lya-
punov.

To ascertain the applicability of the aforementioned LMI
problem in studying the fast-scale instabilities of the converter,
we recall the fuzzy model of the converter (9) operating under
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conventional current-mode control and set the operating point
V A , which we already know is a stable

period-one operating point (Fig. 3). In addition, the fuzzy state
space is portioned into two regions, as stated in the following
with the S-procedure technique explained earlier:

(27)

Solving the LMI problem results in a solution

(28)

(29)

with the optimal value of . Hence, the system
is globally exponentially stable. Solving the LMI problem for

V, the operating point where period-one passes
through period-two (Fig. 3), results in an infeasible solution.
This means that the LMI formulation previously mentioned can
accurately detect the occurrence of bifurcation phenomena in
the boost converter, which, otherwise, is only achievable by em-
ploying complicated discrete nonlinear modeling.

Note that it is not possible to find a common such that
the stability conditions are satisfied. Moreover, by defining the
fuzzy state space in one region instead of two, the LMI problem
is found infeasible even with discontinuous-Lyapunov-func-
tion-based analysis for the stable period-one operating point
of V A ; thus, the region partitioning
is essential to eliminate the conservative formulation of the
stability conditions of Theorem 2.

V. CONTROLLER DESIGN

This section is concerned with the design of a new TS fuzzy
controller that extends the nominal period-one behavior of the
circuit to a large operating domain and, at the same time, boosts
the slow-scale performance of the converter. For this purpose,
we should involve the nonautonomous fuzzy model of the con-
verter (7) in the design process. The controller design has two
objectives. First, it is assumed that a number of different sub-
vector fields are available as a result of discrete states (or func-
tion) so that a number of different local controllers need to
be designed for every subvector field in every region . It is

also assumed that there is an associated local Lyapunov func-
tion for every subvector field

for every region . Such local Lyapunov functions
may naturally exist when the subvector fields are a result of
local control-law design based on the specified local Lyapunov
functions. The second objective is to decide the location of the
switch sets (or function) such that the first and third LMI con-
ditions of the LMI problem outlined in Section IV along with
the LMI condition of Theorem 3, presented later in this sec-
tion, are fulfilled, guaranteeing the stability of the closed-loop
fuzzy system. It is certainly not hard to motivate the need for
such design techniques in practical cases. From a more general
point of view, there are many controller structures in industry
consisting of locally designed controllers and logic deciding the
switching strategy among these [45]. The local controllers may
be designed by linear feedback theory but will be only valid in
certain operating regions of the state space due to nonlinearities
in the system. Controller structures consisting of a linear regu-
lator whose parameters are changed as a function of the oper-
ating conditions in a predetermined way are called gain sched-
ulers [46]. To design the local controllers, the concept of gain
schedulers is employed; thus, the th rule of the control input
can be defined as follows.

1) Control Rule : IF is and and is THEN

(30)

A local state-feedback controller is designed for each subvector
field. The fuzzy controller is inferred as follows:

(31)

By substituting (31) in (7), the closed-loop system can be rep-
resented as (32), shown at the bottom of the page. The first part
of the fuzzy regulator design is to determine the local feedback
gains . The region in the continuous state space where
the subvector field
is allowed to be selected is specified by a set of continuous
states denoted by . Define as shown at the bottom
of the page, which denotes the set of all subvector fields to be
selected for the continuous state . It is assumed that the set

is not empty at every state in the region of validity.

(32)
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By this assumption, at least some subvector fields can be se-
lected at each continuous state . This can be expressed by the
covering condition

Furthermore, it is assumed that there exist at least two overlap-
ping regions and , , where the values of the subvector
fields differ (to have a nontrivial design problem). The regions

already cover the state space, implying that the first condition
of stability in Theorem 2, and accordingly in the LMI problem,
is satisfied. The second condition of stability has to be reformu-
lated with regard to the LMI-based design to determine local
fuzzy regulator feedback gains .

Theorem 3: Let be a diagonal positive definite
matrix. The system (7) can be exponentially stabilized via the
fuzzy controller (31) in the region , where the second
condition of Theorem 2 is replaced by

(33)

where ,

, and .

Proof: Choose the discontinuous quadratic Lyapunov
function of the form defined in (18) and (19). For the vector
field in (32), the time derivative of according to (17) can
be written as

(34)

It follows directly from (34) that, if

then , , due to the fact that . Using a
quadratic Lyapunov function (18), this condition can be formu-
lated as

where and

.

Let be a diagonal positive definite matrix so we can
write

(35)

Fig. 5. Bifurcation diagram of the boost converter varying input voltage.
Switch-on sampling with the synthesized TS fuzzy model.

From (35), it follows that

where and
and denote the minimal and maximal eigenvalues of
the matrix, respectively. Hence

Therefore, is concluded.
Remark 3: Similar to the approach proposed in [25] for a

smooth system, the diagonal matrix has been introduced
to achieve a faster decay rate for the trajectory associated with
each vector field and, hence, better transient performance
for each controller gain associated with each subvector
field. Choosing the right matrix can cause the switching
system to converge faster to the fixed point if the system satis-
fies the stability condition in Theorem 2. Therefore, exponential
stability can coexist with best transient performance.

Fulfilling the first and second conditions of stability ac-
cording to Theorem 2, it remains only to position the switch
sets (if possible) such that the energy decreases at each discrete
state associated with a local Lyapunov function according
to the third condition of Theorem 2. The proposed method
to design the switch sets follows as a result of the stability
conditions stated in Theorems 2 and 3. As mentioned earlier,
naturally local Lyapunov functions are available from the local
control-law design based on Theorem 3. If the location of
switch sets can be designed such that Theorems 2 and 3 are
satisfied, then the stability of the closed-loop fuzzy system is
guaranteed. The following simple example illustrates this idea.

2) Example: Assume that the two quadratic Lyapunov func-
tions are available, described by matrices

which stabilize the corresponding fuzzy systems with linear
subsystems
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Fig. 6. Hatched regions are states satisfying (left) � ���� �� �
� ��� ��� � �, (middle) � ���� �� � � ��� ��� � �, and (right)
� �� � � �� � �.

Fig. 7. Weighting function � ��� for a specific value � of � .

Fig. 8. Hatched regions mark states where both local Lyapunov functions de-
crease and where the energy decreases in the case of switching from ��� ��
to ��� �� and from ��� �� to ��� ��.

in the shaded regions shown in the left and middle photographs
in Fig. 6. These two regions cover the state space an overlap
each other at certain states where a specific subvector field has
to be chosen from the two possible fields.

The weighting functions for this fuzzy system are shown in
Fig. 7. The vertices of the weighting functions for a specific
value of are given by the intersection of the vertical

and the hyperplanes in Fig. 7. The regions where both local
Lyapunov functions are decreasing are shown in Fig. 8. With
the knowledge of the vector-field direction, it can be concluded
that the stability conditions are satisfied if the vector fields are
selected such that is switched to somewhere in
the selected region in the first and third quadrants of Fig. 8 (left)
and is not changed unless the states in the second and fourth

quadrants of Fig. 8 (right) are reached, in which case is
switched to and so on. The vector-field switchings may
occur anywhere in the shaded regions, and one possible choice
is shown in Fig. 9 together with a trajectory simulation.

By switching in the interior of the shaded region, the global
exponential stability conditions in Theorem 2 are satisfied.

In the approach proposed here, it is possible to change
subvector fields and the corresponding Lyapunov functions at
every state where the overall energy decreases, whether equal
or not. The goal is to locate the switch sets such that the stated
stability conditions are satisfied. However, the assumption that
every change of subvector field should occur when local Lya-
punov functions are equal leads, in some cases, to an unstable
system. Selecting the subvector field corresponding to the
smallest Lyapunov function results in the trajectory reaching
the boundary of the region where the energy is guaranteed to
decrease, measured by the local Lyapunov function. Hence,
there must be a switch to the other subvector field but this forced
change will not occur at states where the energies of the two
local Lyapunov functions are equal, as required, for instance,
by the assumptions made in [47]. The practical consequence of
the switching strategy proposed in this section is greater design
flexibility, as illustrated in Example 2. The best design for the
switch sets depends on the given Lyapunov functions. When
these are obtained by designing local controllers as proposed by
Theorem 3, the possibility of success in satisfying the stability
conditions increases with a larger number of local controllers
overlapping each other in large regions. Nevertheless, it is al-
ways possible to succeed in the design of switch sets whenever
there is at least one subvector field that is stable in the entire
region of validity (with an associated Lyapunov function).

To design the fuzzy controller (31), first, we set the entries
of the diagonal matrices and

and maintain the regions as de-
fined in (27). Then, the control gains are obtained by solving
the LMI problem in Theorem 3 and the remaining conditions in
LMI problem 1 as follows:

(36)

Therefore, the control action can be given as (37), shown
at the bottom of the page. Moreover, regarding (3), the duty ratio
can be set to

(38)

After designing the local controllers, what remains is to
locate the switch set to satisfy the third stability condition
of Theorem 2. For this purpose, we define acceptable switch

(37)
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Fig. 9. Switching anywhere in the hatched regions results in a stable closed-
loop system if the subvector-field switchings occur in the interior of the shaded
regions.

regions that can fulfill the third stability condition in Theorem
2. The acceptable switch regions for the converter are given by

Locating the switch set in any area within the acceptable
switch regions (39) guarantees that the energy (local Lyapunov
functions) decreases at every switching region and, therefore,
the exponential stability of the closed-loop fuzzy system. The
justification of the acceptable switch regions is further discussed
in the robustness analysis presented in Section VI.

In order to illustrate the major improvement in converter be-
havior, when operating under the proposed TS fuzzy control
scheme, both in terms of its fast-scale and slow-scale perfor-
mances, a comparison with the converter performance when op-
erating under its conventional control scheme (Fig. 1) is made.
Fig. 10(a) shows how the original control scheme is unable to
regulate the system response when operating at

. The proposed TS fuzzy control scheme can bring the
plant to a stable period-one region and ensure the best regula-
tion, as shown in Fig. 10(b).

Comparing the bifurcation diagrams of the two systems, the
proposed TS fuzzy control scheme can clearly preserve the
stable period-one behavior of the circuit over a much larger
operating range. The proposed TS fuzzy controller successfully
eliminated the nonlinear phenomena identified (Fig. 11(a))
and extended the period-one behavior (Fig. 11(b)) to a much
broader region of reference current values compared with the
black-box-designed TS fuzzy controller proposed by Guesmi
et al. [26]. The exceptional performance of the proposed ap-
proach is also shown in Fig. 12, where the stable period-one
operating region is extended for a significantly wider range of
input voltage values. To check the performance of the proposed
control approach in terms of the transient response of the

Fig. 10. System responses is (a) chaotic under the conventional control scheme
and (b) regulated under the proposed TS fuzzy control scheme.

Fig. 11. Bifurcation diagram varying reference current with (a) the conven-
tional control scheme and (b) the proposed TS fuzzy control scheme.

Fig. 12. Bifurcation diagram varying supply voltage with the proposed TS
fuzzy control scheme.

system, abrupt variations of supply voltage, reference current,
and load were carried out. Fig. 13(a) and (b) shows the superior
transient behavior of the TS fuzzy controller when the supply
voltage is changed from 45 to 85 V at 0.1 s and back to 45 V
at 0.2 s. A similar improvement in performance can be seen
when a large step change in reference current is made from 4
to 6 A, causing a period-doubling bifurcation [Fig. 14(b)] in
the circuit using the original control scheme but maintaining
the stable period-one operation of the circuit when operating
under the proposed TS fuzzy controller [Fig. 14(a)]. A sudden
step change in load from 30 to 50 and back to 30 at 0.1
and 0.2 s, respectively, also causes instability when operating
under the original control scheme, as shown in Fig. 15(a),
whereas stability is maintained when using the proposed TS
fuzzy control method [Fig. 15(b)].

VI. ROBUSTNESS ANALYSIS

If the stability of a fuzzy system of the type (7) with nominal
given switch sets is shown by the Lyapunov theory, the nominal
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Fig. 13. Output current response of the converter subject to sudden supply
voltage changing from 45 to 85 V and from 65 to 45 V at 0.1 and 0.2 s, re-
spectively, with � � �� � under the (a) conventional control scheme and (b)
proposed TS fuzzy control scheme.

Fig. 14. Output current response of the converter subject to large reference
current step changing from 4 to 6 A at 0.2 s with � � �� V under the (a)
conventional control scheme and the (b) proposed TS fuzzy control scheme.

Fig. 15. Output current response of the converter subject to sudden load
changing from 30 to 50 � and from 50 to 30 � at 0.1 and 0.2 s, respectively,
with � � �� V and � � � A under the (a) conventional control scheme
and the (b) proposed TS fuzzy control scheme.

switch sets can still be easily outstretched to guarantee the
third stability condition in Theorem 2. To clarify this, assume
that the fuzzy states and belong to the same
region , satisfying the first and second stability conditions
of Theorem 2. Consequently, according to the third stability
condition, the subvector field can switch from the discrete state

to or vice versa at the continuous state , while still
guaranteeing stability. The discontinuous Lyapunov function
(16) is changed at the subvector-field switching since it is
measured by the same local Lyapunov function (not neces-
sarily quadratic) at both states. Therefore, having a common
Lyapunov function for different discrete states is attractive
from the robustness point of view whenever plausible. Now,
assume that the fuzzy states and belong to
different regions and , measured
by local Lyapunov functions and , respectively. It is
deduced from the third stability condition that the discontin-
uous Lyapunov function (16) decrease is contingent on the
switching of a discrete state to guarantee stability. Based on
the same deduction, if , it is possible to switch
the discrete state from to and, hence, the subvector

field from to
at the contin-

uous state . The set of fuzzy continuous states where the
discrete state is allowed to change and still fulfill the third
stability condition in Theorem 2 due to the energy decrease
of the given Lyapunov function (in the same regions as well
as changing regions due to a change of subvector field) is
considered as acceptable switch regions, and the notation
will be used to indicate specifically where may be switched
to . Formally, the sets are defined by

(39)
Obviously, the acceptable switch region should be much
larger than the nominal switch set which means that

. The region defined by the union of and covers
at least all fuzzy continuous states where switching from dis-
crete states to are admitted due to the existing Lyapunov
function. It is worth noting that this region would be larger than
the nominal specified ones, possibly as a result of conserva-
tively formulating the stability conditions to be valid in larger re-
gions than necessary by the replacement of regions by quadratic
forms. When discrete-state transitions are possible
in the entire continuous state space , then .

In the case of exponential stability, the estimate of the expo-
nential convergence rate stays intact in the acceptable switching
region, since the third condition of stability in Theorem 2 does
not affect the estimate.

VII. CONCLUSION

The TS fuzzy approximation technique has been extended to
model the switching nature of the nonsmooth dynamical model
of the dc–dc power electronic boost converter. The modeling
method is particularly appropriate for the analysis of the fast-
scale stability of the voltage and current waveforms, i.e., the
presence and onset of nonlinear phenomena occurring at clock
frequency. It should be noted that the proposed model has also
the capability of representing a possible sliding-mode behavior
by introducing new discrete states associated with the sliding
mode. Therefore, it can be applied to a much wider range of
nonsmooth dynamical systems such as mechanical systems with
sliding behavior or possibly systems with sliding-mode control.
More importantly, the proposed modeling approach can reduce
the need for the specialized sophisticated software packages for
the accurate numerical simulation of nonsmooth systems due to
the stiffness of their equations.

A rigorous mathematical stability analysis based on discon-
tinuous Lyapunov functions is developed to study the exponen-
tial stability of the system and a variety of circuit nonlinear be-
haviors such as period-doubling bifurcation and chaotic opera-
tion. Stability conditions are presented as LMIs to automate the
search for Lyapunov functions using existing and well-estab-
lished interior-point numerical methods. The resulting stability
conditions provide an effective technique to predict the onset of
fast-scale instabilities.

The main advantage of the model-based TS fuzzy approach is
demonstrated by the design of a switching fuzzy controller in-
spired by fuzzy-gain scheduling concepts and based on the new
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theorem. The new fuzzy control scheme has been shown to im-
prove the fast-scale stability by extending the stable period-one
region of the system to a significantly larger operating domain
while simultaneously boosting the slow-scale transient response
of the circuit.

APPENDIX

Proof of Theorem 2: First, assume that and
are class functions (see [7] for the defini-

tion of class functions). To establish stability in the sense of
Lyapunov, it must be shown that, for any (any
such that is included in ), there exists such
that implies that for all . Due to
the first condition and the continuity of class functions, for
any , there exist such that . Let
the initial state be chosen such that .
Let denote the consecutive times when the trajectory passes
from one region to another. According to the second condition,
the energy decreases in every region, and according to the third
condition, the energy decreases at every switching time. Hence,

for all ; this will be proved formally
using the following exponential stability. Thus,

(40)
implying that for all.

To prove the exponential stability, it must be shown that there
exist two positive numbers, namely, and , such
that

(41)

Let and be defined as in (41). If it is shown that

(42)

is true, then (41) follows from the first condition of the theorem.
Hence, it remains to show that (42) holds.

Assume that the trajectory is in region in the time interval
. Then, , . Using

the first and second conditions, we have

(43)

Consequently

(44)
If is infinite, meaning that the trajectory never leaves

the region, then (42) is true. Otherwise, assume that the tra-
jectory passes through different regions and stays in for

. Assume that ,
where and . Suppose that the trajectory
reaches at time and stays in region for

, where may be infinite. Similarly, it
can be shown that

(45)

The third condition implies that

(46)
Therefore

Since is true for
and , , implies
that , , it can be
concluded from the principle just stated that (42) is true. If
the assumptions hold globally, all inequalities hold for all
initial states since the conditions imply that the trajectories
remain in the bounded region defined by . If

and , then every
trajectory starting in remains in for all future times and
satisfies (41). Hence, .

ACKNOWLEDGMENT

The authors would like to thank Prof. S. Banerjee of the
Centre for Theoretical Studies and the Department of Electrical
Engineering, Indian Institute of Technology, Kharagpur, for his
valuable pieces of advice and constructive comments during
the preparation of this paper.

REFERENCES

[1] , S. Banerjee and G. C. Verghese, Eds., Nonlinear Phenomena in Power
Electronics: Attractors, Bifurcations, Chaos, and Nonlinear Control.
New York: IEEE Press, 2001.

[2] T. Kabe, S. Parui, H. Torikai, S. Banerjee, and T. Saito, “Analysis of
piecewise constant models of current mode controlled DC–DC con-
verters,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci., vol.
E90-A, no. 2, pp. 448–456, Feb. 2007.

[3] M. Di Bernardo and F. Vasca, “Discrete-time maps for the analysis
of bifurcation and chaos in DC–DC converters,” IEEE Trans. Circuits
Syst. I, Fundam. Theory Appl., vol. 47, no. 2, pp. 130–143, Feb. 2000.

[4] M. Di Bernardo, C. J. Budd, P. Kowalczyk, and A. R. Champ-
neys, Piecewise-Smooth Dynamical Systems: Theory and Applica-
tions. New York: Springer-Verlag, 2007.

[5] D. C. Hamill, J. H. B. Deane, and D. J. Jefferies, “Modeling of chaotic
DC–DC converters by iterated nonlinear mappings,” IEEE Trans.
Power Electron., vol. 7, no. 1, pp. 25–36, Jan. 1992.

[6] G. C. Verghese, M. E. Elbuluk, and J. G. Kassakian, “A general
approach to sampled-data modeling for power electronic circuits,” in
Proc. IEEE PESC Rec., 1986, p. 316.

[7] H. K. Khalil and J. W. Grizzle, Nonlinear Systems, 2nd ed. Upper
Saddle River, NJ: Prentice-Hall, 1996.

[8] I. A. Hiskens and M. A. Pai, “Trajectory sensitivity analysis of hybrid
systems,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 47,
no. 2, pp. 204–220, Feb. 2000.

[9] R. I. Leine and H. Nijmeijer, Dynamics and Bifurcations of
Non-Smooth Mechanical Systems. New York: Springer-Verlag,
2004.

[10] D. Giaouris, S. Banerjee, B. Zahawi, and V. Pickert, “Stability anal-
ysis of the continuous-conduction-mode buck converter via Filippov’s
method,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 4, pp.
1084–1096, May 2008.

[11] D. Giaouris, S. Banerjee, B. Zahawi, and V. Pickert, “Control of fast
scale bifurcations in power-factor correction converters,” IEEE Trans.
Circuits Syst. II, Exp. Briefs, vol. 54, no. 9, pp. 805–809, Sep. 2007.

[12] O. Dranga, B. Buti, I. Nagy, and H. Funato, “Stability analysis of non-
linear power electronic systems utilizing periodicity and introducing
auxiliary state vector,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol.
52, no. 1, pp. 168–178, Jan. 2005.

Authorized licensed use limited to: Queen Mary University of London. Downloaded on October 14,2022 at 15:53:35 UTC from IEEE Xplore.  Restrictions apply. 



212 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 57, NO. 1, JANUARY 2010

[13] S. Tan, Y. M. Lai, I. Nagy, and C. K. Tse, “A unified approach to the de-
sign of PWM-based sliding-mode voltage controllers for basic DC–DC
converters in continuous conduction mode,” IEEE Trans. Circuits Syst.
I, Reg. Papers, vol. 53, no. 8, pp. 1816–1827, Aug. 2006.

[14] S. C. Tan, Y. M. Lai, I. Nagy, and C. K. Tse, “General design issues
of sliding-mode controllers in DC–DC converters,” IEEE Trans. Ind.
Electron., vol. 55, no. 3, pp. 1160–1174, Mar. 2008.

[15] H. J. Dankowicz and P. T. Piiroinen, “Exploiting discontinuities for sta-
bilization of recurrent motions,” Dyn. Syst., vol. 17, no. 4, pp. 317–342,
Dec. 2002.

[16] G. Poddar, K. Chakrabarty, and S. Banerjee, “Experimental control
of chaotic behavior of buck converter,” IEEE Trans. Circuits Syst. I,
Fundam. Theory Appl., vol. 42, no. 8, pp. 502–504, Aug. 1995.

[17] G. Poddar, K. Chakrabarty, and S. Banerjee, “Control of chaos in
DC–DC converters,” IEEE Trans. Circuits Syst. I, Fundam. Theory
Appl., vol. 45, no. 6, pp. 672–676, Jun. 1998.

[18] C. Batlle, E. Fossas, and G. Olivar, “Time-delay stabilization of peri-
odic orbits of the current-mode controlled boost converter,” IFAC, vol.
45, no. 6, pp. 111–116, Jul. 1998.

[19] K. Tanaka and M. Sugeno, “Stability analysis and design of fuzzy con-
trol systems,” Fuzzy Sets Syst., vol. 45, no. 2, pp. 135–156, Jan. 1992.

[20] K. Tanaka, T. Ikeda, and H. O. Wang, “Fuzzy regulators and fuzzy
observers: Relaxed stability conditions and LMI-based designs,” IEEE
Trans. Fuzzy Syst., vol. 6, no. 2, pp. 250–265, May 1998.

[21] B. Chen, C. Tseng, and H. J. Uang, “Mixed � �� fuzzy output
feedback control design for nonlinear dynamic systems: An LMI ap-
proach,” IEEE Trans. Fuzzy Syst., vol. 8, no. 3, pp. 249–265, Jun. 2000.

[22] H. D. Tuan, P. Apkarian, T. Narikiyo, and M. Kanota, “New fuzzy con-
trol model and dynamic output feedback parallel distributed compen-
sation,” IEEE Trans. Fuzzy Syst., vol. 12, no. 1, pp. 13–21, Feb. 2004.

[23] C. S. Ting, P. Apkarian, T. Narikiyo, and M. Kanota, “Stability analysis
and design of Takagi–Sugeno fuzzy systems,” Inf. Sci., vol. 176, no. 19,
pp. 2817–2845, Oct. 2006.

[24] P. Bergsten, “Observers and controllers for Takagi–Sugeno fuzzy sys-
tems,” Ph.D. dissertation, Örebro Univ., Örebro, Sweden, 2001.

[25] K. Y. Lian, J. J. Liou, and C. Y. Huang, “LMI-based integral fuzzy
control of DC–DC converters,” IEEE Trans. Fuzzy Syst., vol. 14, no. 1,
pp. 71–80, Feb. 2006.

[26] K. Guesmi, A. Hamzaoui, and J. Zaytoon, “Control of nonlinear phe-
nomena in DC–DC converters: Fuzzy logic approach,” Int. J. Circuit
Theory Appl., vol. 36, no. 7, pp. 857–874, Oct. 2008.

[27] D. Shevitz and B. Paden, “Lyapunov stability theory of nonsmooth sys-
tems,” IEEE Trans. Autom. Control, vol. 39, no. 9, pp. 1910–1914, Sep.
1994.

[28] V. I. Utkin, Sliding Modes and Their Applications in Variable Structure
Systems. Moscow, Russia: MIR Publishers, 1978.

[29] R. DeCarlo, S. Zak, and G. Matthews, “Variable structure control of
nonlinear multivariable systems: A tutorial,” Proc. IEEE, vol. 76, no.
3, pp. 212–232, Mar. 1988.

[30] R. DeCarlo and P. Peleties, “Asymptotic stability of m-switched sys-
tems using Lyapunov-like functions,” in Proc. 33rd IEEE Conf. Deci-
sion Control, Boston, MA, 1991, pp. 1679–1684.

[31] M. S. Branicky, “Stability of switched and hybrid systems,” in Proc.
Amer. Control Conf., Lake Buena Vista, FL, 1994, pp. 3498–3503.
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