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Abstract
Lithium‐ion battery is the commonly used energy storage technology in electric vehicles
(EVs) because of its inexpensive manufacturing cost and high energy capacity. For optimal
utilization of its capacity and lifetime, reliable state of health (SoH) monitoring solutions
have to be included in the battery management system (BMS). SoH of a cell is affected by
several reasons such as internal degradation or external damages that need to be estimated.
This article analyses the current density in electrode and electrolyte of anEV lithium‐ion cell
using a simulation assisted method that leads to improvement in SoH estimation accuracy.
The experimental results are analysed through the fusion of the magnetic field images
captured by quantum fluxgate magnetometers, installed on the surface of the cell, together
with the real‐time simulation of the multi‐physics model of the cell. The magnetic field
sensors measure the magnetic field intensity with an accuracy of ±2 mT. The real‐time
simulation input data is updated from the measurements of both the magnetic field sensors
and the battery cycler. The multi‐physics model of the cell is developed in COMSOL
modelling software, and real‐time data fusion process is implemented on dSPACE
Microlabbox real‐time simulator. Results confirm that the proposed monitoring solution
provides useful insight that can be employed in ageing estimation of EV batteries.

1 | INTRODUCTION

Electric vehicles (EVs) and renewable energy sources (RES)
are the two examples of modern technologies that are
developed based on the advances in energy storage systems
(ESSs) [1–3]. EVs use ESSs for their fully electric operation
and RES benefit from ESSs as a temporary storage for
power stabilization because of their intermittent power
profile [4–6]. Therefore, the performance of the mentioned
examples is directly affected by the operating condition of
their ESSs.

Among all the energy storage technologies, lithium‐ion
batteries (LIBs) are the most commonly used ones because of
their inexpensive manufacturing costs and easier maintenance
in smaller size. LIBs, comparing to the other technologies, have
longer life cycles, higher rate of charge/discharge, and high
energy density, resulting in large capacity suitable for industrial
use cases [7,8]. In contrast to their many advantages, LIBs
require a reliable condition monitoring system to monitor their
state of health (SoH) and state of charge (SoC) due to the

safety and operational issues associated with them. The con-
dition monitoring system is especially crucial for EVs as reli-
ability is highly required, with low maintenance costs.

Condition monitoring of LIBs is usually summarized as
SoC and SoH estimation in the literature [9]. Ageing is the
main factor in SoH estimation. LIBs have a limited number of
charging/discharging cycles that makes them unusable after a
while [10]. A high number of research have been made to
understand ageing in lithium‐ion batteries [11–13]. Further-
more, mechanical degradation in LIBs is another factor that
affects the SoH in a battery. The monitoring of SoC and SoH
in LIBs has been studied in several works such as [14–16] to
name a few. In [15], the measurement of small induced mag-
netic field changes in a cell have been studied to be used for
assessment of the lithium incorporation level into the electrode
materials and to detect certain defects in a cell. In [14], the role
of negative electrode porosity in long‐term ageing of LIBs has
been analysed. It was shown that lithium can only participate to
SEI (solid electrolyte interphase) growth, which decreases the
capacity by lithium consumption.
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Considering the challenges and drawbacks of the existing
methods in SoH estimation [17,18], some improvements have
been made to tackle the problems by proposing smarter SoC
and SoH estimation systems with more accurate results to
prevent possible hazards [19]. There are high chances of fire or
explosion when the LIBs are used in high temperature envi-
ronments or under short circuit faults [20]. It is mandatory to
include a degree of operational awareness in the battery
management systems (BMS) [21,22]. Therefore, a low‐cost
battery monitoring method is required to improve the utiliza-
tion efficiency, and to maximize the safe operation lifetime.

The commonly used techniques for SoC estimation such as
terminal voltage measurement and coulomb counting are not
accurate enough to model the ageing in performance degra-
dation of LIBs [14]. This is due to the nature of the LIBs,
which internally expose different complex non‐linear chemical
processes [23,24]. Although the manufacturing cost of LIBs is
decreasing every year, still high‐capacity batteries are expensive
and require a suitable monitoring system for longer operation.
In [25], a fast non‐destructive method of magnetic field
monitoring is introduced for detecting defects such as capacity
fade and mechanical degradation inside a cell. Beside analysing
the defects, magnetic field around the lithium‐ion cell has also
provided useful information for temperature estimation in
LIBs [26]. There are two main sources for the magnetic fields
around the lithium‐ion cell: (1) surface currents in the elec-
trode, and (2) charge transfer currents in the electrolyte. The
behaviour of these currents in a cell determines the magnetic
field around a cell as is shown in [26], which provides signif-
icant insight of the cell operational state.

Internal current distributions modelling in the electrodes
and electrolyte, even for a few numbers of cycles, is difficult
due to the complex computations required for simulation.
Several examples of representation for the internal behaviour
of batteries can be found in literature, including terminal
voltage, SoC, current density and temperature distribution.
Nevertheless, measuring the distribution of the cell's internal
current density using direct methods is a subject that can be
found in only a few articles. Authors in [27] created a prototype
cell in a lab‐scale size, which was designed for analysing the
distribution of current density inside of the electrode along its
height and width. In this paper, the distribution of cell's current
via the formation process of the graphite electrode has been
investigated. Similarly, in [28], several aged electrodes were
analysed to present that even small current densities can cause
intense gradients inside the electrodes with its subsequent ef-
fect on the magnetic fields. In another example, authors in [29]
created a particular LFP/Graphite prototype cell for this
purpose. In this work, the cell's current distribution while
discharging at varying temperatures and C‐rates was analysed
using a segmented cathode. This set‐up allows for an accurate
monitoring of each electrode's current, individually.

To address the aforementioned challenges in direct SoH
estimation of LIBs, this paper has analysed the current density
in electrode and electrolyte of an EV lithium‐ion cell using a
simulation assisted method in order to show how this infor-
mation leads to a more accurate SoH estimation. Measurement

of electrolyte and electrode current densities are achieved using
magnetic field images from magnetometers, installed on the
surface of the cell. With the help of COMSOL modelling
software, a simulation assisted framework is developed to
validate the contribution of magnetic field images to the SoH
of the LIB. In this work, the lithium‐ion cell for the case study
has current collectors made of Aluminium and Copper, elec-
trodes made of Li Ni1=3Mn1=3Co1=3

� �
O2 (NMC) and Graphite,

and electrolyte made of LiPF6 in 3:7 EC:EMC.
The rest of article is organised as follows. Section 2 pro-

vides a thorough comparison of the existing SoH estimation
methods with the applications in smart grid. In Section 3,
preliminaries of current density calculation in lithium‐ion cells
are provided. Then after, in Section 4, the experimental
framework configuration for the analysis of the magnetic field
images is discussed and it is shown how the current density
graphs are captured. The experimental results are then dis-
cussed in detail in Section 5 in different test cases. It is shown
that how current density can be used as a measure for SoH
estimation of LIBs. Finally, results of the paper are concluded
in Section 6.

2 | STATE OF THE ART, CHALLENGES,
AND OUTLOOK

In this section, after discussing the challenges in SoH estima-
tion, a thorough review of the most recent works in SoH
estimation of LIBs is provided. Also the comparison of the
mentioned methods is summarized in Table 1.

One of the main challenges in the design of BMS for LIBs
is to consider the irreversibility in the degradation process [10].
Capacity fading is directly related to SoH, which is usually
defined as the ratio of current energy capacity to the initial
energy capacity. Different from SoC estimation methods,
which rely on open‐circuit voltage (OCV) measurement [30],
there is no single well‐known parameter, which reflects the
health of the battery with high accuracy. Hence, SoH estima-
tion becomes a multi‐parameter problem by finding a health
indicator (HI) expression, which can be readily acquired and
computed. The SoH is then estimated by feeding the HI to the
estimator established using experimental and simulation data.

A common source of HI for LIBs is the terminal voltage.
Studies on battery ageing mechanisms revealed that the loss of
active materials and lithium‐ion inventory increase the internal
impedance of the battery and affects the polarization voltage
[31]. Electrochemical impedance spectroscopy (EIS) is a widely
used frequency domain method to characterise the impedance
and estimate the SoH [32]. Based on this method, authors in
[33] proposed a novel non‐destructive SoH estimation to
identify charge transfer impedance and Ohmic impedance
from internal impedance. The transformation of Warburg
diffusion impedance from frequency domain to time domain
can also be realised using this method. On top of that, authors
in [34] have found three specific resonance frequencies at
which impedance shows highest relation to the health of the
battery. Nevertheless, EIS‐based methods are expensive, time
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consuming, and cannot be integrated on‐board with the bat-
tery management system. To circumvent the limitations of
EIS‐based methods for SoH estimation, time domain methods
are usually recommended such as Ohmic resistance [35] and
OCV [36].

A number of HIs have been proposed without the use of
electrochemical mechanisms such as the sample entropy of
dynamic voltage responses [37]. However, these HIs require
consistent discharging profiles, and further validation on un-
predictable discharging profiles is still an open question [38].

Adaptive filtering is another SoH estimation approach,
which requires a semi‐accurate battery model. Several adaptive
methods have been used to identify different parameters of
LIBs, including the internal resistance for SoH tracking. Kal-
man filter‐based methods (Kalman filter (KF), extended Kal-
man filter (EKF), Unscented Kalman filter (UKF), Dual EKF,
etc.) have been successfully used to estimate battery SoH using
different HIs [39–41]. Other widely used algorithms in adap-
tive filtering are the least square‐based ones, specially the
recursive least square (RLS) method because of its simple
implementation and accuracy [42]. This method gives an ac-
curate estimation of the parameters, directly linked to battery
SoH [43].

Electrochemical Models (EM) are complex models that
tend to represent the battery behaviour accurately [44]. They
are often based on non‐linear differential equations. Yet those
models can be simplified and combined with adaptive filtering
for SoH estimation. In [45], the author simplifies a battery EM
before identifying two battery SoH indicators, the internal
resistance and the diffusion time, using online recursive
parameter identification. To reduce the generated heat, the cell
tab arrangements were optimized in [46] using COMSOL
electrochemical‐electrical thermal modelling. Above studies
highlighted the importance of temperature on battery
management and tried to control the temperature to ensure
safe and reliable operation of batteries. Machine learning
methods have also been introduced as an improved model‐
based technique which simplifies the mathematical framework
because of the inherent learning mechanism. Acceptable SoH
estimation performance has been reported in [47,48]. These
techniques, however, suffer from the need for high volume of
training data.

The proposed method in this paper is compared with the
reviewed works in Table 1 from the following aspects: accu-
racy, computational complexity, on‐board operation, and time
consumption. The proposed SoH estimation process consists
of two main components: (1) magnetic field imaging technique
and (2) image processing algorithm. This articler only analyses
the magnetic field imaging technique to show its feasibility for
being an accurate HI source, which can be furthered analysed
with different estimation algorithms such as Kalman filters and
machine learning estimators.

Adding an online SoH estimator into the BMS of the EVs
entails the following added value use cases and applications:

� Vehicle to Grid (V2G) applications can benefit from an
online SoH. It helps the microgrid or smart grid manage-
ment system to optimally prioritise charging/discharging of
EVs with different energy costs based on the SoH of the
batteries.

� Automatic vehicle maintenance systems can be designed for
predictive replacement of aged batteries in order ensure
optimal operation of EVs and reduce energy loss due to the
ageing issues related with the batteries.

� EV charging stations can better optimise the charging cur-
rent of the chargers, if the health of the battery is consid-
ered. This can increase the lifetime of the battery by
choosing the right charging current threshold according to
the battery age.

3 | PRELIMINARIES OF CURRENT
DENSITY ESTIMATION

Choosing the right method for modelling the charge transport
through the electrolyte is the starting point when simulating an
electrochemical model since this will determine what physics
environment needed for the simulation tools such as COM-
SOL. In order to apply the correct method of modelling in
COMSOL, the user manual of this software has been studied
[49].

The electric displacement field in a medium is related to the
local charge density according to Gauss's law, one of the
Maxwell's equations:

TABLE 1 Comparison of the most common SoH estimation methods in terms of accuracy, computational complexity, on‐board operations, and time
consumption

SoH estimation method Accuracy Computational complexity Operating on‐board Time consumption

Measuring the internal resistance [30,31] High Low Not supporting High

Measuring the internal impedance [32,33] High Medium Not supporting High

Methods based on the Kalman filter (KF) [39–41] Relatively high Medium Supporting Low

Methods based on the least square filters [37,38] Medium Low Supporting Low

Machine learning based methods [39,40] High Medium Supporting Low

Simplified electrochemical models [41,42] High Very High Supporting High

Proposed magnetic field imaging method High Medium Supporting Low
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∇ ⋅D¼ ρv ð1Þ

Normally, in electrolyte, it can be assumed that the elec-
trical permittivity is constant and is equal to a bulk value:

D¼ ε0εsE¼ −ε0εs ∇ V ð2Þ

Hence

∇2V þ
ρv

ε0εs
¼ 0 ð3Þ

In an electrolyte with ionic charge carriers, the charge
density can be written as:

ρv ¼ F∑
i
zici ð4Þ

∇2V þ
F

ε0εs
∑
i
zici ¼ 0 ð5Þ

This is called the Poisson equation that shows the relation
between electrolyte potential and the distribution of charge
carriers within the electrolyte. It is assumed that ions are the
only charge carriers, and the solvated ions and the electric
fields don't alter the permittivity of the medium.

The mass transport of the charge carriers in aqueous sys-
tems is normally given by the Nernst–Planck equations. These
equations neglect ion–ion interactions, and so they are only
precise for infinitely dilute solutions:

Ni ¼ −Di ∇ ci − zium;iFci ∇ ϕl þ ciu ð6Þ

Concentrated electrolyte is used in many batteries, and to
model the mass transport of the charge carriers in this type of
systems, usually an extended concentrated species flux defini-
tion based on the Maxwell‐Stefan set of equations is needed.
This will result in a different set of equations to solve for, but
the general principles and conclusion in this section will be the
same. Therefore, in this case study, the Nernst–Planck equa-
tions is used for the calculations.

By substituting the Nernst–Einstein equation for the
electrical mobility of an ion we get:

Ni ¼ −Di ∇ci þ
ziF
RT

ci ∇ ϕl

� �

þ ciu ð7Þ

The above expressions for the n species i, together
with the Poisson equation, give a set of n + 1 equations in
n + 1 unknowns. These are the Nernst–Planck–Poisson
equations.

The general mass balance for the diluted species in an
electrolyte is described by the following equations for each
species i:

∂ci
∂t
þ ∇ ⋅Ni ¼ Ri; tot ð8Þ

where Ni is the total flux of species i (SI unit: mol= m2 ⋅ sð Þ).
The flux in an electrolyte is described by the Nernst–Planck
equations and accounts for the flux of charged solute species

F I GURE 1 Flowchart of the proposed magnetic field imaging method.
This flowchart can be used as the reference for application of the SoH
estimators in battery management systems of EVs
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(ions) by diffusion, migration, and convection; these are
respectively the first, second, and third term on right side in the
equation below.

Ni ¼ −Di ∇ ci − zium;iFci ∇ ϕl þ ciu¼ Ji þ ciu ð9Þ

where ⋅ ci represents the concentration of the ion i (SI unit:
mol/m3), ⋅ zi its valence, ⋅ Di the diffusion coefficient (SI unit:
m2=sÞ, ⋅um,i its mobility (SI unit: s ⋅ mol=kgÞ, ⋅F denotes the
Faraday constant (SI unit: C/mol), ⋅ϕi the electrolyte potential,
⋅u is the velocity vector (SI unit: m/s), and ⋅Ji denotes the
molar flux relative to the convective transport.

Ji ¼ −Di ∇ ci − zium;iFci ∇ ϕl ð10Þ

The net current density can be described using the sum of
all species fluxes:

il ¼ F ∑ ziNi ð11Þ

where il denotes the current density vector (SI unit: A/m
2) in

the electrolyte. Assuming an electro‐neutral situation (which
eliminates the convection term) and insignificant concentration
gradients of the current‐carrying ion (which eliminates the
diffusion term), the current density vector in an electrolyte can
be written as follows:

il ¼ −F2 ∑ z2i um;ici ∇ ϕl ð12Þ

Moreover, by assuming approximately constant composi-
tion of charge carriers, a constant electrolyte conductivity is
expressed as follows:

σl ¼ F2 ∑ z2i um;ici ð13Þ

Therefore, the current density in the electrolyte can be
written as:

il ¼ −σl ∇ ϕl ð14Þ

This equation takes the same form as Ohm's law.
Therefore, it can be concluded that the charge transport in an
electrolyte is ohmic.

Similarly, in an electrode, the electron conduction is
modelled using Ohm's law. The domain equation is as follows:

∇ ⋅ is ¼ 0 ð15Þ

where is shows the current density vector according to:

is ¼ −σs ∇ ϕs ð16Þ

where σs shows the electrical conductivity and ϕs is the
potential of the electron conducting phase.

4 | CURRENT DENSITY ESTIMATION
BASED ON MAGNETIC FIELD IMAGING

The theoretical background for calculation of the current den-
sity in the electrode and electrolyte was provided in the previous
section. In this section, the experimental process for current
density measurement based on magnetic fields is provided.

The magnetic field images (MFIs) are captured directly by
attaching an array of multiple magnetic sensors on the lithium‐
ion cell. In Figure 1 the flow chart of the magnetic field im-
aging process is illustrated. The case study lithium‐ion cell is
from Nissan Leaf EV battery cell (Figure 2).

As shown in the flowchart of Figure 1, first the model of
the cell needs to be initialized with the parameters of the cell
under test. Then, raw data from magnetic field sensors are

F I GURE 2 Flow diagram of magnetic field
imaging process presented in this paper. The
equipment includes a battery tester and a real‐time
simulator, which are connected to the cell and sensors
via TCP/IP and CAN protocol. The magnetic field
data is collected by the sensors installed on the cell
and final results are developed in MATLAB/Simulink
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TABLE 2 Physical parameters of the
Nissan leaf cell

Name Expression Description

L_sep 30 [um] Separator thickness

L_pos 60 [um] Positive electrode thickness

L_neg 60 [um] Negative electrode thickness

L_pos_cc 10 [um] Positive current collector thickness

L_neg_cc 10 [um] Negative current collector thickness

W_cell 216 [mm] Cell width

H_cell 290 [mm] Cell height

H_tab 1 [cm] Tab height

W_tab 14 [cm] Tab width

L_cell L_sep + L_pos + L_neg + L_neg_cc/2+L_pos_cc/2 Cell thickness

F I GURE 3 Experimental results: magnetic field images captured from the top of the cell in different states of charge during the 10 A charging. Units are in
Tesla (T) and tabs are placed on top of the image. It shows negligible changes of magnetic field inside of the current collector
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captured and will be processed to generate the MFIs. In this
stage, the noise on the data needs to be removed in order to
have a clear image of magnetic field. The current density
vectors are then calculated directly from the MFIs. The com-
parison of the MFIs from the magnetic sensors on the test cell
and the simulation results of the cell in COMSOL, validates the
effectiveness the MFIs for current density computation inside
the cells and confirms that it can be used as a health indicator
source for the EV batteries.

The eight‐channel battery cycler (BTS‐4000) is used along
with its control unit to emulate different behavioural scenarios
on the cell. Each channel is able to provide up to 20 A. In this

work, they are used to generate different charging/discharging
load cycles for the cell. The battery tester is connected to the
Microlabbox via TCP/IP connection. In order to record the
load current and output voltage waveform of the cell dSPACE
Microlabbox (DS‐1202) is used, which provided real‐time
signals for further data fusion tasks.

Microlabbox was also used for real‐time magnetic field data
collection from the magnetic sensors installed on the surface of
the cell. The recorded data is then processed in MATLAB/
Simulink estimation model for online parameter estimation
of the equivalent battery model. The quantum fluxgate
magnetometers work based on hall effect phenomena. Each

F I GURE 4 COMSOL simulation results: CDIs generated in the positive electrode of the cell at different states of charge during the 10A charging. Unlike
what happened in current collectors, it is shown that the current density distribution pattern changes significantly in the positive electrode. Units are in A/m2

182 - JAVADIPOUR AND MEHRAN

 25152947, 2021, 2, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/stg2.12018 by Q

ueen M
ary U

niversity O
f L

ondo, W
iley O

nline L
ibrary on [14/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



sensor can measure the magnetic field intensity with minimum
resolution of ±2 mT. MFIs were taken during different
conditions under charge cycles of the battery so there would be
a reliable reference available for each state in the cell.

Considering the minimum required accuracy of ±2 mT for
magnetic field monitoring in this study, options include using
advanced Quantum magnetometers, Hall sensors based on
Graphene and Tunnelling Magneto Resistance (TMR) sensors.
Being the most economical choice, TMR sensors are used to
capture the magnetic field within the cell. On the other hand,
owing to the gradual decrease in the price, Hall effect sensors

and Quantum magnetometers are the next suitable candidates
for magnetic field monitoring.

5 | EXPERIMENTAL RESULTS AND
DISCUSSION

As mentioned before, creating an accurate electrochemical
model of the cell is necessary for studying the performance of
the battery. This method is also used for comparing the ex-
pected and the actual results in the case study. In order to

F I GURE 5 Simulation results: magnetic field images generated from the top of the cell in different states of charge during the 10 A charging. Units are in
Tesla (T) and tabs are placed on top of the image. The simulated cell was studied at the same point where the sensors were placed, and it is shown that similar
results with the actual experiment are repeated
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validate the achieved experimental results from the Nissan Leaf
battery, a complete and accurate electrochemical simulation of
the cell is developed using COMSOL Multi‐physics software.

The magnetic field images are captured only during the
charging stage of the battery because the discharging current is
directly affected by the vehicle operation (driver and control
systems). Furthermore, when the EVs are getting charged at
the charging station, the car control system is in the park mode
that results in having mainly the contribution of battery in-
ternal dynamics in the magnetic field images. In order to
prepare the cell for next charging cycle, it has been discharged
with a constant current of 20 A using the cycler.

The main limitation of the proposed method is the chal-
lenge in practical installation of the magnetic field sensors on
the cells. EV battery pouch cells are usually compact and
because of the space limitation, there is not enough gap to
instal the magnetic field sensors. Therefore, in the laboratory
experiment, it was necessary to take out the cells and analyse
them separately. However, this process can be eased if the
sensors get installed in the manufacturing phase of the cells.
From the computational point of view, after the model is tuned
in the simulation and its results are validated through the
capture magnetic field images, it is not necessary to run the
computationally expensive processes again. The same models
and the results of it can be easily fed into the commonly used
image processing algorithms for SoH estimation and ageing
prediction.

COMSOL considers a vast set of parameters and has a
complete library for each element used to manufacture the cell.
During the simulation, the value for most of the parameter
used in the model was available in the software's libraries. The
physical parameters of the battery, as well as the materials of
the electrodes and the electrolyte inside of the cell, are assigned
to the domains of the simulated model. Table 2 shows the

physical parameters and dimensions of the simulated cell. The
parameters related to the materials used in the cell are derived
from [16]. A thorough research has been done to find the most
accurate values for particle radius, porosity and maximum host
capacity for both positive and negative electrodes, to achieve
the possible real results [14,15,50].

5.1 | Magnetic field images on top of the
positive electrode of an old cell during 10 A
charging

The NMC/Graphite cell model simulated in COMSOL has the
same size and parameters comparing to the one we used for
practical experiments. The aged Nissan Leaf cell we used for
testing has a capacity of 27 Ah and the charging process
occurred in room temperature, which was 25°C. Unlike the
charging behaviour, which usually always follows a specific
process, the discharging behaviour in a cell depends on how
the battery is being used in the EVs. Therefore, the main goal
of this study was to monitor the MFIs generated in the cell and
to basically validate the simulation results according to a
specific process in the experiments, MFIs were only studied
during the charging process with charging currents of 5‐A and
10‐A. At this stage of work, monitoring MFIs during charging
gave us sufficient insight into the changes of SoH in the cell.
While charging the existing old Nissan Leaf cell with a charging
current of 10A, the magnetic sensors were placed on the cell to
capture the value of the magnetic field across the current
collector of the cell. In Figure 3, MFIs captured in different
states of charge of the cell during the 10A charging are illus-
trated. It is shown that the magnetic field intensity around the
positive tab, where the input voltage is applied, is higher than
the rest of the cell.

Simulations in COMSOL validated these results. The MFIs
generated in different states of charge of the cell during the
10 A charging of the simulated model is illustrated in Figure 4.
According to the Maxwell's original circuital law, magnetic field
is directly proportional to the current density. Therefore, it is
understood that the current density images (CDIs) across the
cell will have the same pattern comparing to the MFIs. The
experimental results are successfully validated by the simulation
model in COMSOL.

5.2 | Proposed methodology to improve
current density monitoring

According to the final MFIs in different states of charge,
illustrated in Figure 4, it was observed that almost the same
pattern and numbers for each colour‐band is repeated as the
battery went from fully discharged to fully charged and no
noticeable changes happened in the magnetic field captured by
the sensors placed on the top of the positive current collector
of the cell.

This result seems to be natural as the current collector is
made of Aluminium and it somehow acts like a Faraday cage

F I GURE 6 Maximum relative current density across the positive
electrode during the 10 A charging. This graph shows how the current
density magnitude in the positive electrode reaches to a peak during the
charging. The vertical axis shows the relative current density, which is (A/
m2)/(A/m2) = 1, and the horizontal axis shows time in seconds
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and blocks large amount of electromagnetic wave produced
inside of the cell. Therefore, it can be concluded that the
current methodology to monitor the magnetic field generated
by the battery in its different states needs to be improved by
implanting the magnetic field sensor in the structure of the
lithium‐ion cell.

By studying the simulated model in COMSOL, it was
understood that the current density distribution and the in-
tensity will change in the cell in different states of charge, but
this variation is happening in between of the current collectors,
inside of both positive and negative electrodes and also in the

electrolyte of the cell. Figure 5 shows the simulation results of
CDIs change in the positive electrode of the cell, just under the
positive current collector, during the 10 A charging.

It is observed that the current density distribution pattern
changes gradually in the positive electrode. During the
charging process, the current density across the cell will be
uniformed for a short period of time and then, the intensity
around the tabs reaches the lowest level compared to the rest
of the cell. This pattern of distribution of the current density
remains fixed until the cell is nearly charged, although the
values assigned to the current density magnitude gradually

F I GURE 7 COMSOL simulation results: current density images generated in the middle of the electrolyte of the cell at different states of charge during the
10A charging. Units are in A/m2
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increases to reach a peak. To better show this explanation, the
maximum relative current density graph is illustrated in
Figure 6. By dividing the cell's 1‐C current by the cell's area, a
constant value in the form of current density is obtained and
relative current density in the cell is then derived by dividing
the electrode current density magnitude by this constant value.

CDIs are also changed inside of the electrolyte of the cell
during the charging process. Figure 7 shows the simulation
results of CDIs variation in the middle of the electrolyte of the
cell during the 10A charging.

It can be concluded that by monitoring the magnetic field
and subsequently and the the current density inside the positive
electrode or the electrolyte, it will be possible to find a

meaningful relationship between the captured images and the
SoH of the cell. Current density distribution inside the elec-
trolyte follows a similar pattern comparing to the images taken
from the positive electrode, therefore, by inserting the mag-
netic sensors under the aluminium current collector, it would
be possible to record the actual internal behaviour of the cell.

5.3 | CDIs derived from simulated model of
the cell, in different circumstances

The most important feature, which indicates the SoH in a
battery, is the maximum available capacity of the cell. The

F I GURE 8 Current density images generated in
the simulated model of a fresh cell in the middle of
5 A charging duration. The highest current density
magnitude is detected around the positive tab. Units
are in A/m2

F I GURE 9 Current density images generated in
the simulated model of a relatively aged cell in the
middle of 5 A charging duration. Similar to a fresh
cell, the highest current density magnitude is detected
around the positive tab but with a lower value
comparing to the fresh cell. Units are in A/m2
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capacity of the simulated cell depends on the physical and
chemical parameters of the battery, as well as on the maximum
and minimum SoC difference in the cell. The SoC is a
parameter with no units and it is usually defined in percentage.
The simulated battery is studied during the constant current
5‐A charge situation under three different conditions:

1. for a brand‐new or a fresh cell: with a maximum full‐charge
capacity of 97.5%

2. for a relatively aged cell: with a maximum full‐charge ca-
pacity of 85%

3. for an old cell: with a maximum full‐charge capacity of 60%

It was observed that the current density reached a
maximum peak in the middle of the charging mechanism and
on that point, the difference between the maximum and the
minimum level of the current density was maximized. Fig-
ures 8–10 show the peak of the current density across the
positive electrode in the cell.

It is observed that there is a negligible difference between
the two CDIs shown in Figures 9 and 10, as the minimum
value of current density distributed at the endpoints of the
fresh cell, is slightly greater than in an aged cell and obviously,
it is much greater than in an old cell. These images then can be
further studied by image processing techniques for better SoH
estimation. Moreover, the difference between the maximum
and minimum level of current density in a fresh cell, a slightly
aged cell and an old cell are 621.12, 478.16, and 190.71 A/m2,
respectively, as displayed on the colour band.

A comparison is also made in Figure 11 in the form of
relative current density to show the differences in each type of
cell. It can be concluded that as the cell ages, the magnetic field
intensity or the current density distribution across the cell
becomes more uniform.

6 | CONCLUSION

This article provided an analysis of the current density in
electrode and electrolyte of a lithium‐ion cell using a simulation
assisted method. Early achieved results show that the new
proposed method of online current density monitoring in
lithium‐ion batteries has the potential to improve the state
estimation system in a cell. By comparing the practical results
and simulation results created in the COMSOL software, it is
derived that the simulated electrochemical model of the

F I GURE 1 0 Current density images generated in
the simulated model of an old cell in the middle of
5 A charging duration. The highest current density
magnitude is detected both around the positive tab
and at the rear points of the cell. It is also shown that
the current density magnitude in an old cell can never
be as high as in a fresh cell. Units are in A/m2

F I GURE 1 1 Maximum relative current density in a fresh cell, a slightly
aged cell and an old cell. As it is indicated, the current density magnitude in
a fresh cell reaches its highest possible peak and ageing decreases this peak
to some lower values. The vertical axis shows the relative current density,
which is (A/m2)/(A/m2) = 1, and the horizontal axis shows time in
seconds
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lithium‐ion cell can be successfully used for further simulation
assisted magnetic field and SoH monitoring studies. In future,
the information derived from CDIs will be used for predicting
the state of certain parameters of the cell using advanced
machine learning models in order to build battery management
systems with internal ageing estimation functionality.
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