
IET Control Theory & Applications

Research Article

Stability analysis of discrete-time positive
polynomial-fuzzy-model-based control
systems through fuzzy co-positive Lyapunov
function with bounded control

ISSN 1751-8644
Received on 29th January 2019
Revised 15th May 2019
Accepted on 7th June 2019
E-First on 28th October 2019
doi: 10.1049/iet-cta.2019.0133
www.ietdl.org

Xiaomiao Li1 , Kamyar Mehran1, Hak Keung Lam2, Bo Xiao3, Zhiyong Bao4

1School of Electronic Engineering and Computer Science, Queen Mary University of London, London, E1 4NS, UK
2Department of Informatics, Kings College London, London, WC2R 2LS, UK
3Hamlyn Centre for Robotic Surgery, Imperial College London, London SW7 2AZ, UK
4School of Electrical Engineering, Yanshan University, Qinghuangdao, Hebei 066004, People's Republic of China

 E-mail: xiaomiao.li@qmul.ac.uk

Abstract: This study employs a novel fuzzy co-positive Lyapunov function to investigate the stability of discrete-time
polynomial-fuzzy-model-based control systems under positivity constraint. The fuzzy co-positive Lyapunov function consists of a
number of local sub-Lyapunov function candidates which includes the positivity property of a non-linear system and the
contribution of each sub-Lyapunov function candidates depends on the corresponding membership functions. Imperfect premise
matching design concept is used for the design of a closed-loop polynomial fuzzy controller based on the constructed
polynomial fuzzy model. The bounded control signal conditions (upper and lower boundary demands on control signal) are
included in the Lyapunov stability and positivity conditions, in which all are formulated in the form of sum-of-squares conditions.
A numerical example is given to validate the proposed approach.

1 Introduction
One can find examples in chemical reactors, storage systems and
drug-delivery, wherein the mathematical models of the system
states' response to initial positive condition is always confined in
the non-negative orthant space. We call these systems positive
systems. There is a great deal of research in the literature on the
fundamental properties of these systems, i.e. positivity,
controllability, stability and observability [1–9]. In the modelling
of positive non-linear systems, the traditional Takagi–Sugeno (T-S)
fuzzy model [1–9] offers an effective and systematic way to
represent the dynamics of positive non-linear systems using local
linear systems weighed by corresponding membership functions
[10–15]. Traditional linear T-S Fuzzy control and stability analysis
techniques have been further exploited in T-S fuzzy-model-based
(FMB) positive system [16–22]. Typically, Lyapunov stability and
positivity conditions formulated in linear matrix inequalities
(LMIs) are obtained to synthesise fuzzy controller and guarantee
the stability and positivity of the closed-loop T-S FMB control
systems [16–18]. Besides, filters are designed for positive T-S
FMB control systems in [20, 23] and positivity and stability
analysis of special types of positive systems including positive
switch systems and positive Markovian jump systems are also
investigated in the literature [24–30].

Despite recent developments, further, improvement needs to be
made for the analysis of fuzzy positive systems. In modelling,
polynomial fuzzy models have been suggested so far to represent
the dynamics of general non-linear positive systems more
accurately using local polynomial systems weighed by the
corresponding membership functions [31–35]. The capability of
premise modelling of non-linear systems is largely improved
compared with the traditional T-S fuzzy models. Owing to the fact
that the existence of non-linear polynomial elements in the model
would not be represented with certain constants as it is normally
done in the original T-S fuzzy models. As a result, the number of
fuzzy rules can be largely decreased and the structure of overall
fuzzy model is simplified. In this paper, we increase the accuracy
of system approximation by using polynomial fuzzy model to
represent positive non-linear systems. For the analysis, LMI solver

has proved incapable of solving stability and positivity feasibility
problems with polynomial terms. Therefore, we formulate the
stability and positivity condition by sum-of-square (SOS) forms
[31–33, 36, 37], which can be easily solved through a MATLAB®
third-party toolbox SOSTOOLS.

Using the controller design approach of perfect premise
matching, the shape and number of fuzzy rules in the model and
controller must be exactly matched [16–22]. Even though this
design approach eases the stability analysis, it limits the flexibility
of fuzzy controller design and increases implementation cost. To
overcome this drawback, imperfect premise matching design
approach has been suggested [32, 38, 39] where the shape and
number of controller rules are allowed to be chosen freely and
independently of the model. In this way, the shape of membership
functions is simplified and the number of rules can be substantially
reduced in the fuzzy controller [40]. We also choose this design
approach for the polynomial fuzzy controller in this paper.

To enhance the feasibility of the stability analysis of positive
discrete-time polynomial-FMB (PFMB) control system, we further
relax the stability conditions using membership-function-dependent
stability analysis [40], and different types of Lyapunov function
candidates. In the previous studies, the authors suggested
approaches to reduce the conservativeness of positive non-linear
system stability conditions by including the information of
membership functions in the feasibility conditions [41–43]. In [41,
43–45], approximated membership functions were proposed to
represent the approximation error between the approximated and
original membership functions in stability conditions and in [42]
the membership functions are treated as symbol variables in
stability conditions to relax the conservativeness. Quadratic
Lyapunov function is often employed for the stability analysis of
positive system due to its generality [19, 22]. A more favourable
form of Lyapunov function called linear co-positive Lyapunov
function (LCLF) was also attempted for the stability analysis of
positive discrete-time PFMB control system [16–18]. LCLF
naturally hold the positivity property of a non-linear system and
when using with non-negative vectors for the stability analysis of
positive discrete-time PFMB control system, it shall be defined as
constants to hold the positivity property of Lyapunov functions
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[41–43]. This eases the stability analysis using different time-
variable terms; however, it limits the generality of LCLF
formulation. In this paper, a fuzzy co-positive Lyapunov function is
employed to study stability analysis of positive discrete-time
PFMB control system to relax positivity, stability and bounded
control signal conditions. Bounded control, by definition, means
the control signal must be limited by a lower and upper boundary.
There can be found a number of practical systems [6, 46–48] with
bounded control. In the design of the fuzzy controllers, the bounds
of control signal are also taken into account while in most cases the
original operating domain would be unwantedly limited as well [6,
46–48]. In this paper, the boundary of operating domain is
considered along with designing bounded control for discrete-time
PFMB control system not to restrict the original operating domain.
The contributions of this paper are briefly as follows:

(i) The stability and positivity analysis is formulated for discrete-
time PFMB control system under imperfect premise matching
design concept.
(ii) The fuzzy co-positive Lyapunov function is proposed for the
stability of discrete-time positive PFMB control system with the
non-negative vectors in the constant form. This extends the
formulation to more general non-negative vectors in the
polynomial form which improves the generality of Lyapunov
function form and reduces the conservativeness of positivity,
stability and bounded control conditions.
(iii) Polynomial fuzzy controller is synthesised to ensure the
stability and positivity of non-linear system and the certain bounds
of the control signal are considered to guarantee the values of
control signal confined to a certain range without effecting original
operating domain region.

The structure of this paper is organised as follows. In Section 2,
the commonly used notations in this paper are introduced. In
Section 3, the formulation of polynomial fuzzy model and
controller under imperfect premise matching design concept are
presented. In Section 4, the stability and positivity analysis based
on fuzzy co-positive Lyapunov function are formulated considering
bounded controls. In Section 5, a simulation example is given to
verify the proposed method. Finally, Section 6 concludes the paper.

2 Notations
The following notations are adopted throughout this paper. A
monomial in

x(k) = [x1(k), x2(k), …, xn(k)] is a function of the form
x1

d1(k), x2
d1(k), …, xn

dn(k), where di, i ∈ {1, 2, …, n} is a non-negative
integer. The degree of a monomial is defined as d = ∑i = 1

n di.
p(x(k)) is a polynomial if it can be expressed as a finite linear
combination of monomials with real coefficients.
p(x(k)) = ∑ j = 1

m q j(x(k))2 indicates the polynomial p(x(k)) is an
SOS implying p(x(k)) ≥ 0 where q j(x(k)) is a polynomial and m is
a non-zero positive integer. Z ≻ 0, Z ≽ 0, Z ≺ 0 and Z ≼ 0 mean
that all the elements of the matrix Z are positive, semipositive,
negative and seminegative, respectively. RT stands for the
transpose of a real matrix R. n = {1, 2, …, n} where n ∈ ℤ+

denotes the order of fuzzy model. p = {1, 2, …, p} where p ∈ ℤ+

is the rule number of fuzzy model. We define the normalised grade
of membership of fuzzy model and fuzzy controller as
w(x(k)) = [w1(x(k)), w2(x(k)), …, wi(x(k))], i ∈ p and
m(x(k)) = [m1(x(k)), m2(x(k)), …, mj(x(k))], j ∈ c, respectively. In
addition vector variables in this paper are denoted by bold font.

3 Preliminaries
3.1 Discrete-time polynomial fuzzy models

We assume that the dynamics of non-linear discrete-time systems
can be represented by p fuzzy rules of discrete-time polynomial
fuzzy model where the ith rule is presented as follows:

Rule i: IF f 1(x(k)) is M1
i AND⋯AND f Ψ(x(k)) is MΨ

i

THEN x(k + 1) = Ai(x(k))x(k) + Bi(x(k))u(k)
(1)

x(0) = ϕ(0), (2)

where Ml
i, l = {1, 2, …, Ψ} is the fuzzy set of i corresponding to

premise variable f l(x(k)), with l = {1, 2, …, Ψ}; Ψ is a positive
integer; ϕ(0) is the vector valued initial function; Ai(x(k)) ∈ ℜn × n

and Bi(x(k)) ∈ ℜn × m are polynomial system and input matrices,
respectively, with i ∈ p = {1, 2, …, p}, p is the number of IF-
THEN rules; x(k) ∈ ℜn and u(k) ∈ ℜm are state vector and control
input vector, respectively.

The dynamics of non-linear systems is described as follows:

x(k + 1) = ∑
i = 1

p
wi(x(k))(Ai(x(k))x(k) + Bi(x(k))u(k)), (3)

where

∑
i = 1

p
wi(x(k)) = 1, (4)

wi(x(k)) =
∏l = 1

Ψ μMl
i( f l(x(k)))

∑n = 1
p ∏l = 1

Ψ μMl
n( f l(x(k)))

i ∈ p, (5)

wi(x(k)) ≥ 0 i ∈ p, (6)

where wi(x(k)) is the normalised grade of membership,
μMl

i( f l(x(k))) is the grade of membership corresponding to the
fuzzy term Ml

i.
 
Definition 1: System (3) is said to be positive if the initial

condition ϕ(0) ≽ 0 holds and the corresponding trajectory x(k) ≽ 0
for all k [16, 19].

 
Lemma 1: System (3) is said to be positive if the system

matrices satisfy the condition that Ai(x(k)) ≽ 0 when u(k) = 0 [16,
19].

3.2 Discrete-time polynomial fuzzy controller

Based on imperfect premise matching design concept, the jth rule
of the polynomial fuzzy controller is described as follows:

Rule j: IF g1(x(k)) is N1
j AND⋯AND gΩ(x(k)) is NΩ

j

THEN u(k) = G j(x(k))x(k),
(7)

where Nl
j is the fuzzy set of j corresponding to the premise variable

gl(x(k)), with l ∈ {1, 2, …, Ω}, and Ω is a positive integer;
G j(x(k) ∈ ℜm × n is the polynomial feedback gain with
j ∈ c = {1, 2, …, c}, c is the number of IF-THEN rules. Therefore,
the discrete-time polynomial fuzzy controller is given as follows:

u(k) = ∑
j = 1

c
mj(x(k))G j(x(k))x(k), (8)

where

∑
j = 1

c
mj(x(k)) = 1, (9)

mj(x(k)) =
∏l = 1

Ω μNl
j(gl(x(k)))

∑n = 1
c ∏l = 1

Ω μNl
n(gl(x(k)))

, j ∈ c, (10)
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mj(x(k)) ≥ 0, j ∈ c, (11)

mj(x(k)) is the normalised grade of membership, μNl
j(gl(x(k))) is the

grade of membership corresponding to the fuzzy term Nl
j.

 
Remark 1: Under the imperfect premise matching design

concept, the shape of polynomial fuzzy controller's membership
function can be chosen freely from those of the polynomial fuzzy
model [36, 37].

4 Stability and positivity analysis
In this section, the stability and positivity conditions for discrete-
time polynomial fuzzy systems are formulated. First, the
formulation of closed-loop discrete-time PFMB control systems is
presented. The SOS-based positivity conditions based on Lemma 2
are then formulated. The fuzzy co-positive Lyapunov function is
employed to obtain the SOS-based stability conditions and the
gains of the discrete-time fuzzy controller. The formulation of a
closed-loop discrete-time PFMB control system is described based
on the model (3) and the controller (8) as follows:

x(k + 1) = ∑
i = 1

p

∑
j = 1

c
wi(x(k))mj(x(k)) (Ai(x(k))

+Bi(x(k))G j(x(k)))x(k) .
(12)

 
Lemma 2: The control system (12) is said to be controlled

positive if [16, 19]
Ai(x(k)) + Bi(x(k))G j(x(k)) ≽ 0 for all i ∈ p and j ∈ c.

 
Remark 2: In order to ease the stability analysis, system (12) is

transferred to a system called dual system [19]. The equivalence of
stability between the two systems under duality favours the
stability analysis.

The formulation of dual system of (12) is illustrated as follows:

x(k + 1) = ∑
i = 1

p

∑
j = 1

p
wi(x(k))mj(x(k)) (Ai(x(k))

+Bi(x(k))G j(x(k))Tx(k) .
(13)

The proof of the equivalence of stability between two systems
under duality is provided in the following.

 
Proof: For the non-linear discrete-time PFMB control system

(12),

x(k + 1) = ∑
i = 1

p

∑
j = 1

c
wi(x(k))mj(x(k)) (Ai(x(k))

+Bi(x(k))G j(x(k)))x(k)

= ∑
ik = 1

p

∑
jk = 1

c

∑
ik − 1 = 1

p

∑
jk − 1 = 1

c
⋯

× ∑
i0 = 1

p

∑
j0 = 1

c
wi(x(k))mj(x(k))wik − 1(x(k − 1))

× mjk − 1(x(k − 1))⋯wi0(x(0))mj0(x(0))
× (Ai(x(k)) + Bi(x(k))G j(x(k)))
× (Aik − 1(x(k − 1)) + Bik − 1(x(k − 1))
× G jk − 1(x(k − 1)))⋯(Ai0(x(0))
+Bi0(x(0))G j0(x(0)))x(0) .

(14)

For the dual system (13), we can rewrite as

x(k + 1) = ∑
i = 1

p

∑
j = 1

c
wi(x(k))mj(x(k)) (Ai(x(k))

+Bi(x(k))G j(x(k)))x(k)

= ∑
i = 1

p

∑
j = 1

c

∑
ik − 1 = 1

p

∑
jk − 1 = 1

c
⋯

× ∑
i0 = 1

p

∑
j0 = 1

c
wi(x(k))mj(x(k))wik − 1(x(k − 1))

× mjk − 1(x(k − 1))⋯wi0(x(0))mj0(x(0))
× (Ai(x(k)) + Bi(x(k))G j(x(k)))T

× (Aik − 1(x(k − 1)) + Bik − 1(x(k − 1))
× G jk − 1(x(k − 1)))T⋯(Ai0(x(0))
+Bi0(x(0))G j0(x(0)))Tx(0) .

(15)

Assuming the dual system (15) is stable with initial condition
x(0) = ϕ(0) ⪰ 0, we can get x(k + 1) → 0 as k → ∞. Therefore, we
can conclude that

(Ai(x(k)) + Bi(x(k))G j(x(k)))T(Aik − 1(x(k − 1))
+Bik − 1(x(k − 1))G jk − 1(x(k − 1)))T⋯(Ai0(x(0))
+Bi0(x(0))G j0(x(0)))T → 0.

(16)

Since

(Ai(x(k)) + Bi(x(k))G j(x(k)))T(Aik − 1(x(k − 1))
+Bik − 1(x(k − 1))G jk − 1(x(k − 1)))T⋯(Ai0(x(0))
+Bi0(x(0))G j0(x(0)))T

= (Ai0(x(0)) + Bi0(x(0))G j0(x(0)))⋯(Aik − 1(x(k − 1))
+Bik − 1(x(k − 1))G jk − 1(x(k − 1)))(Ai(x(k))
+Bi(x(k))G j(x(k))) T,

(17)

from (16) and (17), it leads to

(Ai0(x(0)) + Bi0(x(0))G j0(x(0)))⋯(Aik − 1(x(k − 1))
+Bik − 1(x(k − 1))G jk − 1(x(k − 1)))(Ai(x(k))
+Bi(x(k))G j(x(k))) → 0.

(18)

From (18) and (14), the stability of dual system (13) implies the
stability of original system (12).

The proof of the equivalence of stability between two systems
under duality is completed. □

4.1 Positivity analysis

Before conducting the stability analysis, the positivity objective
which guarantees the closed loop discrete-time PFMB control
systems positive, i.e. trajectory x(k) ≽ 0 if the initial condition
ϕ(0) ≽ 0 is realised referring to Lemma 2.
 

Theorem 1: The discrete-time PFMB control system (12) or its
dual system (13) with the initial condition ϕ(0) ≽ 0 is guaranteed
to be positive if there exist λl = [λ1

l, λ2
l, …, λn

l ]T ≻ 0 and
yk

j(x(k)) ∈ ℜm for l ∈ p, j ∈ c and k ∈ n such that the following
SOS-based conditions are satisfied

ars
i (x(k))λs

l + br
i(x(k))ys

jl(x(k)) is SOS, i, l ∈ p; j ∈ c, (19)

where ars
i (x(k)) is the (r,s)th element of the matrices Ai(x(k));

Bi(x(k)) = [b1
i(x(k))T, b2

i(x(k))T, …, bn
i (x(k))T]T, i ∈ p, r, s ∈ n,
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G j(x(k)) = y1
jl(x(k))

λ1
l , y2

jl(x(k))
λ2

l , ⋯, yn
jl(x(k))

λn
l = [g1

j(x(k)), g2
j

(x(k)), …, gn
j(x(k))]

where y1
jl(x(k)), y2

jl(x(k)), …, yn
jl(x(k)) ∈ ℜm for l ∈ p and j ∈ c are

polynomial vectors to be determined.

4.2 Stability analysis

For the second control objective, which ensures the closed-loop
discrete-time PFMB control systems asymptotically stable, i.e.
trajectory x(k) → 0 as k → ∞, the following fuzzy co-positive
Lyapunov function is considered to investigate the stability of the
closed-loop discrete-time PFMB control systems (12) based on
Lyapunov stability theory

V(x(k)) = xT(k)λ(x(k)), λ(x(k)) = ∑
l = 1

p
wl(x(k))λl, (20)

where wi(x(k)) ≥ 0 is the normalised grade of membership function
corresponding to polynomial fuzzy model (3),
λl = [λ1

l, λ2
l, …, λn

l ]T ≻ 0.
 

Remark 3: As can be seen from (20), the fuzzy co-positive
Lyapunov function V(k) > 0 is satisfied when λ(x(k)) ≻ 0 is
ensured. Referring to the property of membership functions from
(4)–(6), λ(x(k)) ≻ 0 can be guaranteed by defining
λl = [λ1

l, λ2
l, …, λn

l ]T ≻ 0.
From (20) and (13), we have

△ V(x(k)) = V(x(k + 1)) − V(x(k))
= xT(k + 1)λ(x(k + 1)) − xT(k)λ(x(k))

= xT(k) ∑
i = 1

p

∑
j = 1

c
wi(x(k))mj(x(k))(Ai(x(k))

+Bi(x(k))G j(x(k))) ∑
l = 1

p
wl(x(k + 1))λl

−xT(k) λ(x(k)) .

(21)

As the following expression satisfied

λ(x(k)) = ∑
ς = 1

p
wς(x(k))λς

= ∑
ς = 1

p

∑
i = 1

p

∑
l = 1

p

∑
j = 1

c
wς(x(k))

× wi(x(k))wl(x(k + 1))mj(x(k))λς,

(22)

from (21) and (22), we have

△ V(x(k)) = xT(k) ∑
i = 1

p

∑
j = 1

c
wi(x(k))mj(x(k))(Ai(x(k))

+Bi(x(k))G j(x(k))) ∑
l = 1

p
wl(x(k + 1))λl

−xT(k) λ(x(k))

= xT(k)∑
l = 1

p
wl(x(k + 1))

× ∑
i = 1

p

∑
j = 1

c
wi(x(k))mj(x(k))(Ai(x(k))

+Bi(x(k))G j(x(k))) λl − xT(k) ∑
ς = 1

p

∑
i = 1

p

× ∑
l = 1

p

∑
j = 1

c
wς(x(k))wi(x(k))

× wl(x(k + 1))mj(x(k))λς

≤ xT(k)∑
l = 1

p

∑
ς = 1

p

∑
i = 1

p

∑
j = 1

c
wl(x(k + 1))wς(x(k))

× (Ai(x(k)) + Bi(x(k))G j(x(k)))λl − λς

= xT(k)∑
l = 1

p
wl(x(k + 1)) ∑

ς = 1

p
wς(x(k))Qi jlς(x(k)),

(23)

where

Qi jlς(x(k)) = ∑
i = 1

p

∑
j = 1

c
Ai(x(k))λl + Bi(x(k))

× ∑
s = 1

n
ys

jl(x(k)) − λς

= q1
i jlς(x(k)), q2

i jlς(x(k)), ⋯, qn
i jlς(x(k)) T .

(24)

 
Remark 4: Since the stability analysis of (12) and its dual

system (13) is equivalent, the PFMB control system (12) is
guaranteed to be asymptotically stable, if the fuzzy controller
satisfies the conditions V(k) > 0 and △ V(x(k)) < 0 (excluding
x(k) = 0) according to Lyapunov stability theory. This can be
achieved by Qi jlς(x(k)) ≺ 0 for all i, l and ς ∈ p and j ∈ c.

The stability analysis result is summarised in the following
theorem.

 
Theorem 2: The discrete-time PFMB control system (12) is

positive and asymptotically stable if there exist
λ(x(k)) = ∑l = 1

p wl(x(k))λl ∈ ℜn and ys
jl(x(k)) ∈ ℜm for

l ∈ p, j ∈ c, s ∈ n such that Theorem 1 and the following SOS-
based conditions are satisfied

λs
l − ε1 is SOS, l ∈ p, s ∈ n, (25)

−qs
i jlς(x(k)) − ε2(x(k)) is SOS, i, l, ς ∈ p, j ∈ c, s ∈ n, (26)

where ε1 > 0 and ε2(x(k)) > 0 are predefined scalar and
polynomial, respectively, qs

i jlς(x(k)) is defined in (24), and the
feedback gains and the other variables are defined in Theorem 1.
The decision variable λl is obtained by the SOS formulation
satisfying Theorems 1 and 2. In order to impose the constraint
xk ≥ 0, the technique of variable transformation is employed which
simply turns xs(k) to xs(k)2, s ∈ n.

4.3 Stability and positivity analysis with bounded control
signals

The third control objective is to ensures control signals of the
closed-loop discrete-time PFMB control systems asymptotically
bounded with certain range, i.e. trajectory 0 ⪯ u(k) ≺ u as
k ∈ [0 ∞], where u ≻ 0 is a predefined positive constant vector
which used to denotes the bounds as the function of limiting the
value of control signals.

The SOS-based bounds condition is summarised in the
following theorem.
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Theorem 3: The discrete-time PFMB control system (12) is

positive and asymptotically stable with bounded control if there
exist u ≻ 0, ys

jl(x(k)) ∈ ℜm for l ∈ p j ∈ c and s ∈ n and initial
condition 0 ⪯ ϕ(0) ⪯ λl such that Theorems 1 and 2 and the
following SOS-based conditions are satisfied

ys
jl(x(k)) − ε3(x(k)) is SOS, l ∈ p, j ∈ c, s ∈ n, (27)

− ∑
j = 1

c

∑
s = 1

n
ys

jl(x(k)) + u − ε4(x(k)) is SOS, l ∈ p, j ∈ c, s ∈ n,

(28)

λk = x, (29)

where λk is represented as the minimum λl, l ∈ p and ε3(x(k)) > 0
and ε4(x(k)) > 0 are predefined ℜm polynomials vector, u ≻ 0 is a
predefined ℜm positive constant vector. x is predefined ℜn

constant vector which represents upper boundary information of
operating domain.

 
Proof: First we prove the state feedback polynomial fuzzy

controller
u(k) = ∑ j = 1

c mj(x(k))G j(x(k))x(k) ⪰ 0.
In this paper, we need to design the feedback gains of

polynomial fuzzy controller G j(x(k)) such that the state feedback
polynomial fuzzy controller u(k) = ∑ j = 1

c mj(x(k))G j(x(k))x(k)
satisfying 0 ⪯ u(k) = ∑ j = 1

c mj(x(k))G j(x(k))x(k). From the first
SOS-based condition (27) in Theorem 3 we can get ys

jl(x(k)) ≻ 0
for l ∈ p, j ∈ c, s ∈ n, simultaneously, referring to Remark 2, we
can get λs

l > 0 for l ∈ p, s ∈ n. Since the formulation of polynomial
fuzzy controller

G j(x(k)) = y1
jl(x(k))

λ1
l , y2

jl(x(k))
λ2

l , …, yn
jl(x(k))

λn
l = [g1

j(x(k)), g2
j

(x(k)), …, gn
j(x(k))],

we can get G j(x(k)) ≻ 0. Furthermore, the SOS-based positivity
conditions in Theorem 1 guarantee x(k) ⪰ 0, therefore we can
obtain u(k) = ∑ j = 1

c mj(x(k))G j(x(k))x(k) ⪰ 0.
In the following we prove the state feedback polynomial fuzzy

controller
u(k) = ∑ j = 1

c mj(x(k))G j(x(k))x(k) ≺ u. From the Theorem 3,
we get the initial condition 0 ⪯ ϕ(0) ⪯ λl, therefore we can get
u(k) = ∑ j = 1

c mj(x(k))G j(x(k))x(k) ⪯ ∑ j = 1
c mj(x(k))G j(x(k))λl for

any initial condition 0 ⪯ ϕ(0) ⪯ λl and l ∈ p. If we show that
x(k) ≺ λl, since the SOS-based positivity condition (19) in Theorem
1 implies Ai(x(k)) + Bi(x(k))G j(x(k)) ⪰ 0 and from polynomial
fuzzy model (12) we can have

x(k + 1) = ∑
i = 1

p

∑
j = 1

c
wi(x(k))mj(x(k)) (Ai(x(k))

+Bi(x(k))G j(x(k)))x(k)

⪯ ∑
i = 1

p

∑
j = 1

c
wi(x(k))mj(x(k)) Ai(x(k))λl

+Bi(x(k)) ∑
s = 1

n
ys

jl(x(k)) .

(30)

Furthermore, from the second SOS-based stability condition
(26) implies qs

i jlς(x(k)) < 0 for i, l, ς ∈ p, j ∈ c, s ∈ n, therefore we
have

Qi jlς(x(k)) = ∑
i = 1

p

∑
j = 1

c
Ai(x(k))λl + Bi(x(k))

× ∑
s = 1

n
ys

jl(x(k)) − λς ≺ 0.
(31)

From (30) and (31), we can get

x(k + 1) ⪯ ∑
i = 1

p

∑
j = 1

c
wi(x(k))mj(x(k)) Ai(x(k))λl

+Bi(x(k)) ∑
s = 1

n
ys

jl(x(k))

≺ ∑
i = 1

p

∑
j = 1

c
Ai(x(k))λl + Bi(x(k)) ∑

s = 1

n
ys

jl(x(k))

≺ λς .

(32)

where i, l and ς ∈ p and j ∈ c. Hence

x(k + 1) ≺ ∑
i = 1

p

∑
j = 1

c
Ai(x(k))λl + Bi(x(k)) ∑

s = 1

n
ys

jl(x(k))

≺ λl, for all l ∈ p .
(33)

This proof process can apply to prove x(k) ≺ λl if initial
condition 0 ⪯ ϕ(0) ⪯ λl. Therefore,

u(k) = ∑
j = 1

c
mj(x(k))G j(x(k))x(k)

⪯ ∑
j = 1

c
G j(x(k))x(k)

≺ ∑
j = 1

c
G j(x(k))λl

= ∑
j = 1

c

∑
s = 1

n
ys

jl(x(k)) .

(34)

Furthermore, the second SOS-based bounded condition (28)
implies ∑ j = 1

c ∑s = 1
n ys

jl(x(k)) ≺ u for l ∈ p, j ∈ c and s ∈ n,
therefore we have u(k) = ∑ j = 1

c mj(x(k))G j(x(k))x(k) ≺ u.
Additionally, the third SOS-based bounded condition (29)

implies the minimum λl, l ∈ p which represents that λk satisfies
λk = x, therefore we can guarantee system states x(k) ⪯ x which
ensures positive PFMB control system can always work in the
whole operating domain.

The proof is completed. □
 
Remark 5: To demonstrate that the fuzzy co-positive Lyapunov

function can produce more relaxed positivity, stability and bounded
control conditions compared with common co-positive Lyapunov
function because of its generality, now we introduce common co-
positive Lyapunov function as following

V(x(k)) = xT(k)λ, (35)

From (13) and (35), we have
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△ V(x(k)) = V(x(k + 1)) − V(x(k))

= ∑
i = 1

p

∑
j = 1

c
wi(x(k))mj(x(k)) xT(k)(Ai(x(k))

+Bi(x(k))G j(x(k))) λ

= ∑
i = 1

p

∑
j = 1

c
wi(x(k))mj(x(k))xT(k) Ai(x(k))λ

+Bi(x(k)) ∑
s = 1

n
ys

j(x(k)) − λ

≤ ∑
i = 1

p

∑
j = 1

c
xT(k)Qi j(x(k))

(36)

where

Qi j(x(k)) = Ai(x(k))λ + Bi(x(k)) ∑
s = 1

n
ys

j(x(k)) − λ . (37)

and

G j(x(k)) = y1
j(x(k))

λ1
, y2

j(x(k))
λ2

, ⋯, yn
j(x(k))

λn
,

y1
j(x(k)), y2

j(x(k)), …, yn
j(x(k)) ∈ ℜm for j ∈ c are to be determined.

Referring to SOS-based conditions from Theorem 3 for fuzzy
co-positive Lyapunov function, the positivity condition
Ai(x(k))λ + Bi(x(k))∑s = 1

n ys
j(x(k)) ⪰ 0, stability conditions λ ≻ 0

and Qi j(x(k)) ≺ 0 and bounded control conditions ys
j(x(k)) ≻ 0,

∑ j = 1
c ∑s = 1

n ys
j(x(k)) − u ≺ 0 and λ = x for common co-positive

Lyapunov function guarantee the positivity, stability and bounded
control for discrete-time PFMB control system (12) and its dual
system (13).

Compared the formulation of common co-positive Lyapunov
function (35) and fuzzy co-positive Lyapunov function (20), we
can get constant vector λ in (35) is replaced by λ(x(k)) in (20)
which lead to relaxed feasible solution of positivity, stability and
bounded control conditions for solver to find attainably. Therefore,
the conservativeness of positivity, stability and bounded control
conditions can be reduced to a certain extent.

5 Simulation example
In this section, the proposed theorem is validated using a
simulation example. A discrete-time polynomial fuzzy model with
three rules is considered with the following sub-systems and input
matrices

x(k) = [x1(k) x2(k)]T,
A10(x1(k))

= 0.06b + 0.7 + 0.015x1(k) − 0.001x1(k)2 0.2
0.2 0.3

,

A20(x1(k)) = 0.4 0.1 − 0.01x1(k)
0.2 0.1a

,

A30(x1(k)) =
0.03 0.4

0.24 + 0.01x1(k) 0.06 + 0.0003x1(k)2 ,

B1(x1(k)) =
−0.3b + 0.4

0.1 − 0.001x1(k)2 ,

B2(x1(k)) = 1 + 0.015x1(k)2

−0.1 + 0.001x1(k)2 ,

B3(x1(k)) = −1 + 0.005x1(k)2

0.1 − 0.001x1(k)2 ,

u = 2.

The parameters a and b are constant parameters chosen in the
range of 1.5 ≤ a ≤ 5 and 5.3 ≤ b ≤ 6.1 at the interval of 0.5 and
0.2, respectively.

The membership functions of three-rule polynomial fuzzy
model are chosen as

w1(x1(k)) = 1 − 1
(1 + e−(2x1(k) − 6))

,

w2(x1(k)) = 1 − w1(x1(k)) − w3(x1(k)), w3(x1(k))

= 1
(1 + e−(2x1(k) − 14))

.

Under imperfect premise matching design concept, we choose a
two-rule polynomial fuzzy controller to guarantee the positivity
and stability of the system and bounded control signal. The
membership functions of the fuzzy controller are chosen as
follows:

m1(x1(k)) =
1, for x1(k) < 2.5
−x1(k) + 7.5

5 , for 2.5 ≤ x1(k) ≤ 7.5
0, for x1(k) > 7.5

and m2(x1(k)) = 1 − m1(x1(k)). Fig. 1 shows the shape of
membership functions. The control objective is that the PFMB
control system is guaranteed to be asymptotically stable, positive
and bounded control in the operating domain
x1(k) ∈ [0 10], x2(k) ∈ [0 15].

Based on the SOS-based positivity, stability and bounded
control conditions derived from Theorem 3, we set
ε1 = ε2(x(k)) = ε3(x(k)) = ε4(x(k)) = 0.0010, and ys

jl(x(k)) for l ∈ p
j ∈ c and s ∈ n as polynomial of degree 0–4 in x1(k). The results
for fuzzy co-positive Lyapunov function are shown in Fig. 2 where
the feasible regions satisfying SOS-based positivity, stability and
bounded control conditions are shown with ‘∘’. Based on the
conditions referring to Remark 5, we set ys

j(x(k)) for j ∈ c and
s ∈ n as polynomial of degree 0 to 4 in x1(k). The results for
common co-positive Lyapunov function are shown in Fig. 2 where
the feasible regions satisfying SOS-based positivity, stability and
bounded control conditions are shown with ‘×’.

It is visible in Fig. 2 that the feasible regions obtained based on
fuzzy co-positive Lyapunov function are larger than those are
obtained based on common co-positive Lyapunov function.
Therefore, we can get the fuzzy co-positive Lyapunov function
provides more relaxed results than common co-positive Lyapunov
function.

To verify the effectiveness of the proposed method, first, the
transient response of system states x(k) with initial conditions

Fig. 1  The fuzzy model membership functions (solid lines) and fuzzy
controller membership functions (dotted lines)
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ϕ(0) = [10, 15]T for a = 1.5, b = 6.1 is conducted (see Fig. 3). The
open-loop phase plot of system states x1(k) and x2(k) for
a = 1.5, b = 6.1 with eight different initial conditions indicated by
‘∘’ including ϕ(0) = [3, 3]T, [2, 5]T, [3, 10]T, [9, 8]T, [7, 1]T, [8, 12]T,

[2, 11]T, [10, 15]T[2, 11]T, [10, 15]T are conducted (see Fig. 4). 
As can be seen from Figs. 3 to 4, the original open-loop discrete
time system is unstable. Referring to the obtained feasible regions
based on fuzzy co-positive Lyapunov function, a = 1.5, b = 6.1
indicated by ‘∘’ in Fig. 2 based on Theorem 3 can be employed to

guarantee the stability and positivity of discrete time polynomial
based control system with bounded control. In order to verify the
result, the transient response of system states, control signal and
feedback gains of fuzzy controller and phase plot of system states
are conducted together. λ1 = [10, 15]T, λ2 = [26.19, 39.29]T and
λ3 = [34.19, 51.29]T are obtained and feedback gains of polynomial
fuzzy controller are obtained in Table 1. 

The transient response of system states x(k), control signal u(k)
and feedback gains G j(k) with initial conditions ϕ(0) = [10, 15]T

(see Figs. 5–7) are illustrated that the polynomial fuzzy controller
is always able to guarantee the positivity, stability and bounded
control for non-linear polynomial fuzzy control system when
0 ⪯ ϕ(0) ⪯ λl for all l ∈ p. 

As can be seen from Fig. 5, confined with range of
0 ⪯ ϕ(0) ⪯ λl for all l ∈ p, the polynomial fuzzy controller in Table
1 obtained based on Theorem 3 can guarantee the system positivity
and stability. As in Fig. 6, the polynomial fuzzy controller in Table
1 can guarantee the bounded control signal 0 ≤ u(k) < 2. Also in
Fig. 7, the polynomial fuzzy controller obtained in Table 1 can
guarantee the value of feedback gains of polynomial fuzzy
controller G j(k) ≻ 0. Therefore, the control objectives including
positivity, stability and bounded control are all realised.

To ensure the validity of results, the phase plots of x1(k) and
x2(k) are simulated with eight different initial conditions indicated
by ‘∘’ including

Fig. 2  The feasible regions given by common co-positive Lyapunov
function indicated by ‘×’ based on Remark 5, given by fuzzy co-positive
Lyapunov function indicated by ‘∘’ based on Theorem 3

 

Fig. 3  Transient response of open-loop system states x(k) with the initial
condition ϕ(0) = [10, 15]T for a = 1.5, b = 6.1

 

Fig. 4  Open-loop phase plot of x1(k) and x2(k) for a = 1.5, b = 6.1
 

Table 1 Feedback gains of polynomial fuzzy controller
corresponding to the feasible region indicated by the
symbols ‘∘’ for a = 1.5, b = 6.1 referring to Fig. 2 based on
Theorem 3
G j(x(k)) Parameters for polynomial fuzzy controller

G1(x(k)) 0.3613 × 10−5x1
4 − 0.2441 × 10−3x1

3

+0.6100 × 10−2x1
2 − 0.6402 × 10−1x1

+0.2384,
0.2214 × 10−5x1

4 − 0.1489 × 10−3x1
3

+0.3630 × 10−2x1
2 − 0.3770 × 10−1x1

+0.1551,
G2(x(k)) 0.3613 × 10−5x1

4 − 0.2441 × 10−3x1
3

+0.6100 × 10−2x1
2 − 0.6402 × 10−1x1

+0.2384,
0.2214 × 10−5x1

4 − 0.1489 × 10−3x1
3

+0.3630 × 10−2x1
2 − 0.3770 × 10−1x1

+0.1551.
 

Fig. 5  Transient response of system states x(k) with the initial condition
ϕ(0) = [10, 15]T (the feasible region indicated by the symbol ‘∘’ based on
Theorem 3 for a = 1.5, b = 6.1 referring to Fig. 2)
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ϕ(0) = [3, 3]T, [2, 5]T, [3, 10]T, [9, 8]T, [7, 1]T, [8, 12]T,
[2, 11]T, [10, 15]T[2, 11]T, [10, 15]T (38)

The results (see Fig. 8) show that the polynomial fuzzy
controller is able to drive all the system states to equilibrium

(origin) while always hold them positive based on different initial
conditions. 

In the next, the transient response of system states x(k) with
initial conditions ϕ(0) = [10, 15]T for a = 1.5, b = 5.5 are
conducted (see Fig. 9). The open-loop phase plot of system states
x1(k) and x2(k) for a = 1.5, b = 6.1 with 8 different initial
conditions indicated by ‘∘’ including

ϕ(0) = [3, 3]T, [2, 5]T, [3, 10]T, [9, 8]T, [7, 1]T, [8, 12]T, [2, 11]T,
[10, 15]T, [2, 11]T, [10, 15]T

(39)

are conducted (see Fig. 10). As can be seen from Figs. 9 to 10, the
original open-loop discrete time system is unstable. Referring to
the obtained feasible regions based on common co-positive
Lyapunov function, a = 1.5, b = 5.5 indicated by ‘×’ in Fig. 2
based on Remark 5 can be employed to guarantee the stability and
positivity of discrete time polynomial based control system with
bounded control. In order to verify the result, the transient response
of system states, control signal and feedback gains of fuzzy
controller and phase plot of system states are conducted together.
λ = [10, 15]T is obtained and feedback gains of polynomial fuzzy
controller are obtained in Table 2. 

The transient response of system states x(k), control signal u(k)
and feedback gains G j(k) with initial conditions ϕ(0) = [10, 15]T

(see Figs. 11–13) are illustrated that the polynomial fuzzy
controller is always able to guarantee the positivity, stability and
bounded control for non-linear polynomial fuzzy control system
when 0 ⪯ ϕ(0) ⪯ λ. 

Fig. 6  Control signal u(k) with the initial condition ϕ(0) = [10, 15]T (the
feasible region indicated by the symbol ‘∘’ based on Theorem 3 for
a = 1.5, b = 6.1 referring to Fig. 2)

 

Fig. 7  Feedback gains of fuzzy controller G j(k) with the initial condition
ϕ(0) = [10, 15]T (the feasible region indicated by the symbol ‘∘’ based on
Theorem 3 for a = 1.5, b = 6.1 referring to Fig. 2)

 

Fig. 8  Phase plot of x1(k) and x2(k) (the feasible region indicated by the
symbol ‘∘’ based on Theorem 3 for a = 1.5., b = 6.1 referring to Fig. 2)

 

Fig. 9  Transient response of open-loop system states x(k) with the initial
condition ϕ(0) = [10, 15]T for a = 1.5, b = 5.5

 

Fig. 10  Open-loop phase plot of x1(k) and x2(k) for a = 1.5, b = 5.5
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As seen in Fig. 11, considering 0 ⪯ ϕ(0) ⪯ λ, the polynomial
fuzzy controller obtained in Table 2 can guarantee the system
positivity and stability. As seen in Fig. 12, the polynomial fuzzy
controller obtained in Table 2 guarantees the bounded control

signal 0 ≤ u(k) < 2 and the value of feedback gains of polynomial
fuzzy controller G j(k) ≻ 0 (see Fig. 13). Therefore, the control
objectives including positivity, stability and bounded control are all
realised.

To ensure the validity of results, the phase plots of x1(k) and
x2(k) are simulated with eight different initial conditions indicated
by ‘∘’ including

ϕ(0) = [3, 3]T, [2, 5]T, [3, 10]T, [9, 8]T, [7, 1]T, [8, 12]T,
[2, 11]T, [10, 15]T, [2, 11]T, [10, 15]T (40)

.
The results (see Fig. 14) show that the polynomial fuzzy

controller is able to drive all the system states to equilibrium
(origin) while always hold them positive based on different initial
conditions. 

From the simulation results, we can get fuzzy co-positive
Lyapunov function possess the capability to relax the stability and
positivity analysis of discrete time PFMB control system. The
reason is that compared with fixed constant vector λ = [10, 15]T in
Remark 5, variable vector λ(x(k)) = ∑1 = 1

3 wl(x(k))λl with
predefined

w1(x1(k)) = 1 − 1
(1 + e−(2x1(k) − 6))

,

Table 2 Feedback gains of polynomial fuzzy controller
corresponding to the feasible region indicated by the
symbols ‘×’ for a = 1.5, b = 5.5 referring to Fig. 2 based on
Remark 5
G j(x(k)) Parameters for polynomial fuzzy controller

G1(x(k)) 0.1755 × 10−6x1
4 − 0.4967 × 10−5x1

3

+0.1325 × 10−3x1
2 − 0.2904 × 10−2x1

+0.6671 × 10−1,
0.1170 × 10−6x1

4 − 0.3311 × 10−5x1
3

+0.8834 × 10−4x1
2 − 0.1936 × 10−2x1

+0.4447 × 10−1

G2(x(k)) 0.1755 × 10−6x1
4 − 0.4967 × 10−5x1

3

+0.1325 × 10−3x1
2 − 0.2904 × 10−2x1

+0.6671 × 10−1,
0.1170 × 10−6x1

4 − 0.3311 × 10−5x1
3

+0.8834 × 10−4x1
2 − 0.1936 × 10−2x1

+0.4447 × 10−1

 

Fig. 11  Transient response of system states x(k) with the initial condition
ϕ(0) = [10, 15]T (the feasible region indicated by the symbol ‘×’ based on
Remark 5 for a = 1.5, b = 5.5 referring to Fig. 2)

 

Fig. 12  Control signal u(k) with the initial condition ϕ(0) = [10, 15]T (the
feasible region indicated by the symbol ‘×’ based on Remark 5 for
a = 1.5, b = 5.5 referring to Fig. 2)

 

Fig. 13  Feedback gains of fuzzy controller G j(k) with the initial condition
ϕ(0) = [10, 15]T (the feasible region indicated by the symbol ‘×’ based on
Remark 5 for a = 1.5, b = 5.5 referring to Fig. 2)

 

Fig. 14  Phase plot of x1(k) and x2(k) (the feasible region indicated by the
symbol ‘×’ based on Remark 5 for a = 1.5, b = 5.5 referring to Fig. 2)
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w2(x1(k)) = 1 − w1(x1(k)) − w3(x1(k)), w3(x1(k))

= 1
(1 + e−(2x1(k) − 14))

,

obtained λl with λ1 = [10, 15]T, λ2 = [26.19, 39.29]T and
λ3 = [34.19, 51.29]T based on Theorem 3 through solver is much
more capable of finding feasible solutions which leads to relaxed
stability analysis.

6 Conclusion
This paper studies the positivity, stability and bounded control
analysis of discrete-time PFMB control system based on imperfect
premise matching the design concept. Fuzzy co-positive Lyapunov
function is proposed to guarantee the stability of discrete-time
positive PFMB control system. The formulation of Lyapunov
candidate allows the non-negative vectors in terms of system state
functions to be contained in Lyapunov function. This improves the
generality of Lyapunov function and conservativeness of positivity,
stability and bounded control analysis is relaxed compared with
common co-positive Lyapunov function. We clearly show via a
simulation example that by using the Theorem 3, we can guarantee
the positivity, stability and bounded control of discrete-time PFMB
control system simultaneously and SOS-based positivity, stability
and bounded control conditions can be further relaxed without
effecting operating domain for discrete-time PFMB control system.

In the future, the stability and positivity conditions of discrete-
time PFMB control system can be further relaxed by considering
the information membership functions in the proposed stability and
positivity Theorem. Furthermore, the proposed fuzzy co-positive
Lyapunov function stability analysis can be employed to control
discrete-time positive non-linear system by combining other
control methods such as output-feedback and observer-based
feedback controller and so on aiming for different kinds of
practical application systems.
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