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Abstract: This study proposes a novel, relaxed, Lyapunov-based and membership-function dependent stabilisation analysis of
discrete-time polynomial-fuzzy-model-based (PFMB) control systems with time delay under positivity constraint. The discrete-
time non-linear system with time delay is represented by a polynomial fuzzy model, and corresponding PFMB controller is
designed using imperfect premise matching technique which does not require its fuzzy rule and shape of membership functions
be matched with those of the model. The authors take advantage of this property to relax the conservativeness of the obtained
stability results by introducing the information of membership functions, i.e. the relationship constraint information of
membership functions between the model and the controller and boundary information of membership functions, into the
stability and positivity conditions. A numerical example is given to demonstrate the effectiveness of the proposed approach.

1 Introduction
Positive systems are referred to as a kind of systems whose state
variables always confine to be positive whenever the initial
condition is non-negative. We find examples of positive systems in
a number of industrial processes including the one in chemical
reactor, heat exchanges and storage systems [1–4]. The stability
analysis research related to different types positive systems are
fruitful, such as interval positive systems in [5], switched positive
systems in [6–8] and Markov Jump positive systems in [9]. In
addition, the dynamics of a non-linear system in the real world
commonly involves time delay which may lead the system to
unsatisfactory performance and even instability [10–12]. There are
many research achievements of time delay systems, such as filter
design in [13], predictive control in [14] and output feedback
control in [15]. Therefore, it is meaningful to take into account the
presence of time delay in the stability analysis and controller
design for positive non-linear systems.

Many industrial processes are described by discrete time non-
linear models, and fuzzy control is an effective way to deal with
the discrete time non-linear systems. Different methods of fuzzy
control of discrete time non-linear systems have been conducted
such as stabilisation issue in [16] and observer design in [17]. For
the modelling of such systems, instead of using the popular
Takagi–Sugeno (T–S) fuzzy model [7, 8, 18, 19], we employ
polynomial fuzzy model whose subsystems are weighted by
polynomial terms with corresponding membership functions to
represent the dynamics of discrete time non-linear positive system
with time delay. The reason is that compared with T–S fuzzy
model, polynomial fuzzy model can represent wider non-linear
systems [20–22]. In the polynomial fuzzy model, the original non-
linear components of the polynomial terms are kept intact which in
turn decreases the number of fuzzy rules. Most importantly, due to
the capability of the precise approximation, stability analysis and
control synthesis based on the polynomial fuzzy model are more
applicable to the original non-linear system when compared with
T–S fuzzy model. In terms of computation complexity, compared
with T–S fuzzy model, although the formulation of system, input
and time delay matrices of polynomial fuzzy model is
comparatively complicated, the simplified structure of polynomial
fuzzy model and less number of fuzzy rules will also reduce
computation complexity. Based on polynomial fuzzy model, a

polynomial fuzzy controller then can be designed to guarantee the
stability and positivity of discrete-time polynomial-fuzzy-model-
based (PFMB) control system with time delay. The stability
analysis along with the controller design is formulated as sum-of-
squares (SOS) feasibility and positivity solutions which can be
solved by the third party MATLAB toolbox SOSTOOLS [20–23].
The advantage of SOSTOOLS is the existence of polynomial terms
in the stability conditions which cannot be solved by LMI toolbox
but can be solved by SOSTOOLS, and polynomial fuzzy controller
is allowed to be realised through SOSTOOLS.

The novel imperfect premise matching (IPC) design concept
proposed by Lam [24, 25] introduced a breakthrough in the
traditional PDC design concept [26–28] in designing fuzzy
controller. Compared with traditional PDC design, IPC design
concept can improve the flexibility of fuzzy controller where the
shape of membership functions and number of fuzzy rules of the
controller can be independent of those of the model [29–32]. Based
on IPC design concept, a novel idea of membership-function
dependent analysis [24, 25] is proposed to bring the membership
function information into stability/performance/robustness
analysis. This leads to further relaxation of the conservativeness of
the SOS formulation. The information of membership functions
can be introduced using local/regional membership function
information [24, 25, 32], staircase membership functions [33],
piecewise linear membership functions [34] and Taylor series
membership functions [21].

For the stability analysis of discrete-time positive PFMB
control system with time delay, efforts can be made following
mainly two directions. For the first direction, favourable Lyapunov
function candidate is employed to reduce the conservativeness of
stability analysis of discrete time positive PFMB control system
with time delay. In this paper, instead of quadratic Lyapunov–
Krosovskill function frequently used in the literature [28, 35, 36], a
new form of Lyapunov function candidate, i.e. linear co-positive
Lyapunov function (LCLF) is employed. LCLF not only follows
the basic principle of Lyapunov stability theory but considers the
nature of positivity in discrete-time positive PFMB control system
with time delay [27, 37]. For the second direction, IPC design
concept and membership function dependent stability analysis [24,
25] are applied to relax the stability analysis of discrete time
positive PFMB control system with time delay. Few attempts have
shown success in relaxing stability of the positive PFMB control
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system with time delay [37–40]. In [37–39] by considering
membership functions as symbolic variables or piecewise
membership functions, the stability and positivity can be achieved.
In this way, the information of membership functions can be
introduced into the stability conditions to reduce their
conservativeness formulation.

In this paper, we propose a novel method to include the
information of membership functions by the relationship constraint
information between membership functions of the fuzzy model and
controller in the overall state space and introduce it into the
stability analysis by slack matrices. In a number of membership
function dependent stability analysis literature [20, 37–39], by
considering the lower and upper boundary of membership
functions of fuzzy model wi(x(k)) and fuzzy controller mj(x(k))
denoting ηi ≤ wi(x(k)) ≤ ηi, φ j ≤ mj(x(k)) ≤ φ j, the information
regarding shape of the membership functions is introduced into the
stability analysis. In this paper, this procedure will be generalised
in a way that any constraint relationship information on the
membership function shape as
σi jwi(x(k))mj(x(k)) + ℓiwi(x(t)) + Γ jmj(x(k)) − φ ≥ 0 can be
incorporated in the SOS-based stability conditions. As a result, the
conservativeness of stability and positivity conditions of discrete
time PFMB control system with time delay can be reduced based
on constraint relationship information of the membership
functions. Furthermore, unlike boundary of membership functions
which carries limited information of membership functions,
arbitrary number of constraints of membership functions between
model and controller can be given and integrated into the stability
analysis. This means that one can arbitrarily increase the amount of
information of membership functions into the stability and
positivity conditions. Together with constraint information of
membership functions between model and controller, the boundary
information of the membership functions of model and controller
will also be included in the stability analysis. Furthermore, as the
information of the membership functions is carried by some slack
matrices to the stability analysis and the number of stability
conditions are generally higher, computational demand on finding
a feasible solution to the stability conditions will be higher,
however, in the membership function dependent stability analysis,
the stability conditions obtained are not for any shape of
membership functions but dedicated to the fuzzy model based
control system to be controlled, which means we can much more
easily find the wanted fuzzy controller to stabilise the non-linear
system. Therefore, the conservativeness of stability analysis can be
reduced further. The contributions of this paper are listed as below:

1. We use the relationship constraint information between
membership functions of polynomial fuzzy model and
controller along with the boundary information of the
membership functions to relax the (membership-function
dependent) stability and positivity analysis of a discrete time
PFMB control system with time delay, which means arbitrary
number of constraints of membership functions between model
and controller can be given and integrated into the stability
analysis.

2. Polynomial fuzzy model is proposed to represent the dynamics
of a discrete-time PFMB control system with time delay,

3. IPC design concept is used to design the polynomial fuzzy
controller and formulate the stability/positivity feasibility
conditions, which means the number of rules and membership
functions of the polynomial fuzzy controller can be freely
chosen (i.e. c ≠ p, m1, …, mc ≠ w1, …, wp) independently of the
polynomial fuzzy model.

The rest of paper is organised as follows. In Section 2, the
formulation of discrete-time polynomial fuzzy model and
controller are provided. In Section 3, relaxed stability/positivity
conditions are proposed in form of two theorems. The conditions
include the relationship constraint information between
membership functions of the polynomial fuzzy model and
controller along with the boundary information of the membership

functions. In Section 4, a simulation example is given to validate
the proposed theoretical analysis. Paper is concluded in Section 5.

2 Notations and preliminaries
2.1 Notation

The following notations are adopted throughout this paper. A
monomial in x(k) = [x1(k), x2(k), …, xn(k)] is a function of the form
x1

d1(k), x2
d1(k), …, xn

dn(k), where di, i ∈ {1, 2, …, n} is a non-negative
integer. The degree of a monomial is defined as d = ∑i = 1

n di.
p(x(k)) is a polynomial if it can be expressed as a finite linear
combination of monomials with real coefficients.
p(x(k)) = ∑ j = 1

m q j(x(k))2 indicates the polynomial p(x(k)) is an
SOS implying p(x(k)) ≥ 0 where q j(x(k)) is a polynomial and m is
a non-zero positive integer. Z ≻ 0, Z ≽ 0, Z ≺ 0 and Z ≼ 0 mean
that all the elements of the matrix Z are positive, semipositive,
negative and seminegative, respectively. RT stands for the
transpose of a real matrix R. n = {1, 2, …, n} where n ∈ ℤ+

denotes the order of fuzzy model. p = {1, 2, …, p} where p ∈ ℤ+

is the number of rules of the fuzzy model. c = {1, 2, …, c} where
c ∈ ℤ+ is the rule number of fuzzy controller. d = {1, 2, …, d},
where d ∈ ℤ+ is the time delay. We denote the normalised grades
of membership of fuzzy model and fuzzy controller as
w(x(k)) = [w1(x(k)), w2(x(k)), …, wi(x(k))], i ∈ p and
m(x(k)) = [m1(x(k)), m2(x(k)), …, mj(x(k))], j ∈ c, respectively.

2.2 Discrete time polynomial fuzzy models with time delay

The dynamics of the discrete-time non-linear plant is described by
p-rule polynomial fuzzy model. The ith rule subsystem is shown as
below format:

Rule i: IF f 1(x(k)) is M1
i AND⋯AND f Ψ(x(k)) is MΨ

i

THEN x(k + 1) = Ai0(x(k))x(k)

+ ∑
l = 1

d
Ailx(k − τl) + Bi(x(k))u(k)

(1)

x(k) = ϕ(k), k = [ − τmax, 0], (2)

where Ml
i, l = {1, 2, …, Ψ} is the fuzzy set in rule i corresponding

to the premise variable f l(x(k)), l = {1, 2, …, Ψ}; Ψ is a positive
integer; ϕ(k) is the vector valued initial function; Ai0(x(k)) ∈ ℜn × n,
Ail ∈ ℜn × n and Bi(x(k)) ∈ ℜn × m are known polynomial system,
time delay and input matrices, respectively; x(k) ∈ ℜn and
u(k) ∈ ℜm are state vector and control input vector, respectively;
τl, l ∈ d = {1, 2, …, d}, is the constant time delay. Therefore, the
system dynamics is described as below format:

x(k + 1) = ∑
i = 1

p
wi(x(k)) Ai0(x(k))x(k)

+ ∑
l = 1

d
Ailx(k − τl) + Bi(x(k))u(k) ,

(3)

where wi(x(k)) is the normalised grade of membership and satisfies

wi(x(k)) =
∏l = 1

Ψ μMl
i( f l(x(k)))

∑k = 1
p ∏l = 1

Ψ μMl
k( f l(x(k)))

≥ 0 (4)

∑
i = 1

p
wi(x(k)) = 1 (5)

μMl
i( f l(x(k))) is the grade of membership corresponding to the

fuzzy term Ml
j.
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Definition 1: A system is said to be positive if, given the non-

negative initial condition ϕ( ⋅ ) ≽ 0, the corresponding trajectory
x(k) remains in the positive orthant for all k ≽ 0 [28].
 

Lemma 1: The discrete time polynomial fuzzy model based
system with time delay (3) with u(k) = 0 is said to be positive if
the system and time delay matrices satisfy Ai0(x(k)) ≽ 0 and
Ail ≽ 0 [28].

2.3 Polynomial fuzzy controller

The jth rule of the PFMB controller using the IPC design concept
is described as below:

Rule j: IF g1(x(k)) is N1
j AND⋯AND gΩ(x(k)) is NΩ

j

THEN u(k) = G j(x(k))x(k),
(6)

where gl(x(k)), l ∈ {1, 2, …, Ω}, is the premise variable
corresponding to fuzzy set Nl

j in rule j and Ω is a positive integer,
G j(x(k)) ∈ ℜm × n, j ∈ c, is the polynomial feedback gain to be
determined. The polynomial fuzzy controller is described as

u(k) = ∑
j = 1

c
mj(x(k))G j(x(k))x(k), (7)

where mj(x(k)) is the normalised grade of membership satisfies

mj(x(k)) =
∏l = 1

Ω μNl
j(gl(x(k)))

∑k = 1
c ∏l = 1

Ω μNl
k(gl(x(k)))

≥ 0 (8)

∑
j = 1

c
mj(x(k)) = 1 (9)

μNl
j(gl(x(k))) is the grade of membership corresponding to the fuzzy

term Nl
i.

 
Remark 1: In the IPC design concept [24, 25, 32], we let the

membership function mj(x(k)) of the PFMB controller to be freely
chosen as mj(x(k)) ≠ wi(x(k)) for any p ≠ c. Furthermore, we can
also choose number of rules of the polynomial fuzzy controller
which is same as polynomial fuzzy model (i.e. p = c) but
membership functions of the polynomial fuzzy controller are freely
chosen (i.e. mj(x(k)) ≠ wi(x(k))) independently of the polynomial
fuzzy model. No matter what kind of membership functions are
chosen for fuzzy model and fuzzy controller, the membership
functions need to satisfy the property (4)–(5) and (8)–(9).

2.4 Discrete time polynomial fuzzy models based control
system with time delay

Formed by polynomial fuzzy model (3) and controller (7), the
discrete time PFMB control system with time delay is

x(k + 1) = ∑
i = 1

p

∑
j = 1

c
wi(x(k))mj(x(k)) (Ai0(x(k))

+Bi(x(k))G j(x(k)))x(k) + ∑
l = 1

d
Ailx(k − τl) .

(10)

 
Lemma 2: The discrete time PFMB system with time delay (10)

is controlled positive for ϕ( ⋅ ) ≽ 0 if
Ai0(x(k)) + Bi(x(k))G j(x(k)) ≽ 0 and Ail ≽ 0 [28].

3 Positivity and stability analysis

To obtain a favourable formulation which is independent of time
delay, we employ the dual system of the original system [28, 36]
for the stability analysis. In a dual system, the matrices are
transposed of the ones in the original system. Dual system of (10)
is described as below:

x(k + 1) = ∑
i = 1

p

∑
j = 1

p
wi(x(k))mj(x(k)) (Ai0(x(k))

+Bi(x(k))G j(x(k))Tx(k) + ∑
l = 1

d
Ail

Tx(k − τl) .
(11)

In the following, we prove the equivalence of stability between
two systems under duality principals.
 

Proof: Consider the discrete time PFMB control system (10)

x(k + 1) = ∑
i = 1

p

∑
j = 1

c
wi(x(k))mj(x(k)) (Ai0(x(k))

+Bi(x(k))G j(x(k)))x(k) + ∑
l = 1

d
Ailx(k − τl)

= ∑
ik = 1

p

∑
jk = 1

c

∑
lk = 1

d

∑
ik − 1 = 1

p

∑
jk − 1 = 1

c

∑
lk − 1 = 1

d
⋯

× ∑
i0 = 1

p

∑
j0 = 1

c

∑
l0 = 1

d
wi(x(k))mj(x(k))

× wik − 1(x(k − 1))mjk − 1(x(k − 1))⋯
× wi0(x(0))mj0(x(0))
× (Ai0(x(k)) + Bi(x(k))G j(x(k)) + Ail)
× (Aik − 10(x(k − 1)) + Bik − 1(x(k − 1))
× G jk − 1(x(k − 1)) + Aik − 1lk − 1)⋯
× (Ai00(x(0)) + Bi0(x(0))G j0(x(0)) + Ai0l0)
× x( − τl − τlk − 1 − ⋯τl0) .

(12)

From (11), we can get the following expression:

x(k) = ∑
i = 1

p

∑
j = 1

p
wi(x(k − 1))mj(x(k − 1)) (Ai0(x(k − 1))

+Bi(x(k − 1))G j(x(k − 1))Tx(k − 1)

+ ∑
l = 1

d
Ail

Tx(k − τl − 1)

x(k − 1) = ∑
i = 1

p

∑
j = 1

p
wi(x(k − 2))mj(x(k − 2)) (Ai0(x(k − 2))

+Bi(x(k − 2))G j(x(k − 2))Tx(k − 2)

+ ∑
l = 1

d
Ail

Tx(k − τl − 2)

…

(13)

Therefore, the dual system (11) can be rewritten as
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x(k + 1) = ∑
i = 1

p

∑
j = 1

p
wi(x(k))mj(x(k)) (Ai0(x(k))

+Bi(x(k))G j(x(k))Tx(k) + ∑
l = 1

d
Ail

Tx(k − τl)

= ∑
ik = 1

p

∑
jk = 1

c

∑
lk = 1

d

∑
ik − 1 = 1

p

∑
jk − 1 = 1

c

∑
lk − 1 = 1

d
⋯

× ∑
i0 = 1

p

∑
j0 = 1

c

∑
l0 = 1

d
wi(x(k))mj(x(k))

× wik − 1(x(k − 1))mjk − 1(x(k − 1))⋯
× wi0(x(0))mj0(x(0))
× (Ai0(x(k)) + Bi(x(k))G j(x(k)) + Ail)T

× (Aik − 10(x(k − 1)) + Bik − 1(x(k − 1))
× G jk − 1(x(k − 1)) + Aik − 1lk − 1)

T⋯
× (Ai00(x(0)) + Bi0(x(0))G j0(x(0)) + Ai0l0)

T

× x( − τl − τlk − 1 − ⋯τl0) .

(14)

Based on the definition of Lyapunov stability theory, if we say
that the dual system (14) is stable with initial condition
x(0) = ϕ(0) ⪰ 0 and
x( − τl − τlk − 1 − ⋯τl0) = ϕ( − τl − τlk − 1 − ⋯τl0) ⪰ 0, then we have
x(k + 1) → 0 as k → ∞. Therefore, we get if k → ∞, the following
formulations is satisfied:

(Ai0(x(k)) + Bi(x(k))G j(x(k)) + Ail)T

× (Aik − 10(x(k − 1)) + Bik − 1(x(k − 1))
× G jk − 1(x(k − 1)) + Aik − 1lk − 1)

T⋯
× (Ai00(x(0)) + Bi0(x(0))G j0(x(0)) + Ai0l0)

T → 0.
= (Ai00(x(0)) + Bi0(x(0))G j0(x(0)) + Ai0l0)⋯

× (Aik − 10(x(k − 1)) + Bik − 1(x(k − 1))
× G jk − 1(x(k − 1)) + Aik − 1lk − 1)
× (Ai0(x(k)) + Bi(x(k))G j(x(k)) + Ail) T → 0,

(15)

and if formulation (15) is satisfied, we obviously have

(Ai00(x(0)) + Bi0(x(0))G j0(x(0)) + Ai0l0)⋯
× (Aik − 10(x(k − 1)) + Bik − 1(x(k − 1))
× G jk − 1(x(k − 1)) + Aik − 1lk − 1)
× (Ai0(x(k)) + Bi(x(k))G j(x(k)) + Ail) → 0.

(16)

From (16) and (12), we can obtain the stability of dual system
(11) which is equivalent to (10) in terms of stability. Therefore, we
can guarantee the PFMB controller (7) based on IPC design
concept is able to stabilise the original system (10) and its dual
system (16) at the same time. This completes proof. □

3.1 SOS-based positivity analysis
First, we investigate the positivity analysis for discrete-time PFMB
control systems with time delay, i.e. we guarantee trajectory
x(k) ≽ 0 if the initial condition ϕ( ⋅ ) ≽ 0. Using Lemma 2, SOS-
based positivity conditions are described in Theorem 1.
 

Theorem 1: The discrete time PFMB control system with time
delay (10) with the initial condition ϕ( ⋅ ) ≽ 0 is controlled positive
if there exist λ ∈ ℜn and ys

j(x(k)) ∈ ℜm for j ∈ c and s ∈ n such
that the following SOS-based conditions are satisfied:

a f s
i0 (x(k))λs + b f

i (x(k))ys
j(x(k)) is SOS, i ∈ p; j ∈ c; f , s ∈ n,(17)

a f s
il  is SOS, i ∈ p; l ∈ d; f , s ∈ n, (18)

where λ = [λ1, λ2, …, λn]T ≻ 0, a f s
i0 (x(k)) and a f s

il  are the (f,s)-th
element of the system and time delay matrices Ai0(x(k)) and Ail,
respectively; Bi(x(k)) = [b1

i(x(k))T, b2
i(x(k))T, ⋯, bn

i (x(k))T]T, i ∈ p,
f , s ∈ n; the polynomial fuzzy controller is

G j(x(k)) = y1
j(x(k))

λ1
, y2

j(x(k))
λ2

, ⋯, yn
j(x(k))

λn
 where y1

j(x(k)), y2
j(x(k)), …,

yn
j(x(k)) ∈ ℜm for j ∈ c are to be determined.

 
Proof: The obtained SOS-based positivity conditions (17) and

(18) can be realised based on Lemma 2. □

3.2 SOS-based stability analysis
Subject to positivity conditions based on Theorem 1, the following
polynomial Lyapunov functional candidate is employed to
investigate stability of (10) and (11)

V(x(k)) = xT(k)λ + ∑
m = 1

p

∑
l = 1

d

∑
q = 1

τd

x(k − q)TAmlλ , (19)

where λ = [λ1, λ2, …, λn]T ≻ 0.
From (11) and (19), we get

△ V(x(k)) = V(x(k + 1)) − V(x(k))

= ∑
i = 1

p

∑
j = 1

c
wi(x(k))mj(x(k)) xT(k)(Ai0(x(k))

+Bi(x(k))G j(x(k))) + xT(k − τl)∑
l = 1

d
Ail λ

+ ∑
m = 1

p

∑
l = 1

d
x(k)TAml − x(k − τl)TAml λ

−xT(k)λ

≤ ∑
i = 1

p

∑
j = 1

c
wi(x(k))mj(x(k)) xT(k)(Ai0(x(k))

+Bi(x(k))G j(x(k))) λ

+ ∑
i = 1

p

∑
l = 1

d
xT(k − τl)Ailλ − xT(k)λ

+ ∑
m = 1

p

∑
l = 1

d
x(k)TAml − x(k − τl)TAml λ

≤ ∑
i = 1

p

∑
j = 1

c
wi(x(k))mj(x(k)) xT(k)(Ai0(x(k))

+Bi(x(k))G j(x(k))) λ − xT(k)λ

+ ∑
m = 1

p

∑
l = 1

d
x(k)TAmlλ

= ∑
i = 1

p

∑
j = 1

c
wi(x(k))mj(x(k))xT(k) (Ai0(x(k))

+Bi(x(k))G j(x(k)))λ − λ + ∑
m = 1

p

∑
l = 1

d
Amlλ

= ∑
i = 1

p

∑
j = 1

c
wi(x(k))mj(x(k))xT(k) (Ai0(x(k))

+ ∑
m = 1

p

∑
l = 1

d
Aml)λ + Bi(x(k)) ∑

s = 1

n
ys

j(x(k)) − λ

= ∑
i = 1

p

∑
j = 1

c
wi(x(k))mj(x(k))xT(k)Qi j(x(k)),

(20)

where
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Qi j(x(k)) = Ai0(x(k)) + ∑
m = 1

p

∑
l = 1

d
Aml λ

+Bi(x(k)) ∑
s = 1

n
ys

j(x(k)) − λ

= q1
i j(x(k)), q2

i j(x(k)), …, qn
i j(x(k)) T .

(21)

 
Remark 2: Together with guaranteeing asymptotical positivity

of (10) by satisfying conditions in Theorem 1, due to the stability
equivalence of (10) and the dual system (11), the asymptotic
stability of (10) is guaranteed by V(k) > 0 and △ V(k) < 0
(excluding x(k) = 0) based on Lyapunov stability theory. This is
realised using qs

i j(x(k)) < 0 for i ∈ p, j ∈ c, s ∈ n.

3.3 Relaxed membership functions dependent
stability analysis
Solving the positivity and asymptotic stability conditions for (10)
based on Remark 2 may found very conservative since no
information from membership functions have been introduced in
the stability analysis. In this section, to reduce such
conservativeness, we will introduce information from membership
functions by considering boundary and relationship constraint
between membership functions of the fuzzy model and controller.
First, we consider the lower and upper boundary of membership
functions as follows:

ηi ≤ wi(x(k)) ≤ ηi, (22)

φ j ≤ mj(x(k)) ≤ φ j, (23)

ρi j ≤ wi(x(k))mj(x(k)) ≤ ρi j, (24)

where ηi and ηi are the lower and upper bounds of polynomial
fuzzy model membership functions, respectively, φ j and φ j are the
lower and upper bounds of fuzzy controller membership functions,
respectively, ρi j and ρi j are the lower and upper bounds of
wi(x(k))mj(x(k)), respectively.

We then consider the relationship constraint information
between membership functions of the fuzzy model and the
controller

∑
i = 1

p

∑
j = 1

c
σri jwi(x(k))mj(x(k)) + ℓriwi(x(t))

+Γr jmj(x(k)) − φr ≥ 0,
(25)

where σri j, ℓri, Γr j and φr are the predefined parameters which
satisfy the formulation (25). As can be seen from the formulation
(25), it gives a general constraint relationship information between
membership functions of fuzzy model wi(x(k)) and fuzzy controller
mj(x(k)). Take the example (22) that membership function of fuzzy
model corresponding to fuzzy rule 1 satisfy η1 ≤ w1(x(k)), we can
treat it as a special case when σri j = Γr j = 0 for i ∈ p, j ∈ c,
ℓr1 = 1, ℓri = 0, φr = η1 for i ∈ 2, …, p. Therefore, using
relationship constraint information (25), more information of
membership functions can be included in stability and positivity
analysis. We will then introduce the terms in (22)–(25) by slack
matrices in following inequalities:

∑
i = 1

p
(wi(x(k)) − ηi)Mi(x(k)) ≽ 0, (26)

∑
i = 1

p
(ηi − wi(x(k)))Wi(x(k)) ≽ 0, (27)

∑
j = c

p
(mj(x(k)) − φ j)P j(x(k)) ≽ 0, (28)

∑
j = 1

c
(φ j − mj(x(k)))Z j(x(k)) ≽ 0, (29)

∑
i = 1

p

∑
j = 1

c
(wi(x(k))mj(x(k)) − ρi j)Hi j(x(k)) ≽ 0, (30)

∑
i = 1

p

∑
j = 1

c
(ρi j − wi(x(k))mj(x(k)))Ji j(x(k)) ≽ 0, (31)

∑
r = 1

R

∑
i = 1

p

∑
j = 1

c
σri jwi(x(t))mj(x(t)) + ℓriwi(x(t))

+Γr jmj(x(t)) − φr Tr(x(t)) ≽ 0,
(32)

where 0 ≼ Mi(x(k)) ∈ ℜn, 0 ≼ Wi(x(k)) ∈ ℜn, 0 ≼ P j(x(k)) ∈ ℜn,
0 ≼ Z j(x(k)) ∈ ℜn, 0 ≼ Hi j(x(k)) ∈ ℜn, 0 ≼ Ji j(x(k)) ∈ ℜn and
0 ≼ Tr(x(k)) ∈ ℜn are polynomial vectors. R ∈ ℤ+ denotes the
number of relationship constraint information of membership
functions between polynomial fuzzy model and controllers.

From (26)–(32) and (20), we obtain

△ V(x(k)) ≤ xT(k)∑
i = 1

p

∑
j = 1

c
wi(x(k))mj(x(k))Qi j(x(k))

+ ∑
i = 1

p
(wi(x(k)) − ηi)Mi(x(k))

+ ∑
i = 1

p
(ηi − wi(x(k)))Wi(x(k))

+ ∑
j = 1

c
(mj(x(k)) − φ j)P j(x(k))

+ ∑
j = 1

c
(φ j − mj(x(k)))Z j(x(k))

+ ∑
i = 1

p

∑
j = 1

c
(wi(x(k))mj(x(k)) − ρi j)Hi j(x(k))

+ ∑
i = 1

p

∑
j = 1

c
(ρi j − wi(x(k))mj(x(k)))Ji j(x(k))

+ ∑
r = 1

R

∑
i = 1

p

∑
j = 1

c
σri jwi(x(k))mj(x(k))

+ℓriwi(x(k)) + Γr jmj(x(k)) − φr Tr(x(k))
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= xT(k)∑
i = 1

p

∑
j = 1

c
wi(x(k))mj(x(k)) Qi j(x(k))

+Mi(x(k)) − Wi(x(k)) + P j(x(k))
−Z j(x(k)) + Hi j(x(k)) − Ji j(x(k))

+ ∑
r = 1

R
(σri j + ℓri + Γr j)Tr(x(k))

+ ∑
i = 1

p
ηiWi(x(k)) − ηiMi(x(k))

+ ∑
j = 1

c
φ jZ j(x(k)) − φ jP j(x(k))

+ ∑
i = 1

p

∑
j = 1

c
ρi jJi j(x(k)) − ρi jHi j(x(k))

+ ∑
r = 1

R
φrTr(x(k)) .

(33)

We define
Ui j(x(k)) ≽ Qi j(x(k)) + Mi(x(k)) − Wi(x(k)) + P j(x(k)) − Z j(x(k
)) + Hi j(x(k)) − Ji j(x(k)) + ∑r = 1

R (σri j + ℓkri + Γr j)Tr(x(k))
and Ui j ≽ 0. Therefore, we have

△ V(x(k)) ≤ xT(k)∑
i = 1

p

∑
j = 1

c
ρi jUi j(x(k))

+ ∑
i = 1

p
(ηiWi(x(k)) − ηiMi(x(k)))

+ ∑
j = 1

c
(φ jZ j(x(k)) − φ jP j(x(k)))

+ ∑
i = 1

p

∑
j = 1

c
(ρi jJi j(x(k)) − ρi jHi j(x(k)))

+ ∑
r = 1

R
φrTr(x(k))

= xT(k)∑
i = 1

p

∑
j = 1

c
ρi jUi j(x(k)) + ηiWi(x(k))

−ηiMi(x(k)) + φ jZ j(x(k)) − φ jP j(x(k))

+ρi jJi j(x(k)) − ρi jHi j(x(k)) + ∑
r = 1

R
φrTr(x(k)) .

(34)

From (34), the membership-function dependent asymptotic
stability and positivity conditions of (10) subject to Theorem 1 are
summarised in the following theorem.

 
Theorem 2: The PFMB control system (10) is positive and

asymptotically stable if Theorem 1 and the following SOS-based
conditions are satisfied:

λs − ε1 is SOS, s ∈ n, (35)

− ∑
i = 1

p

∑
j = 1

c
ρi jus

i j(x(k)) + ηiws
i(x(k)) − ηims

i(x(k))

+φ jzs
j(x(k)) − φ jps

j(x(k)) + ρi j jsi j(x(k))

−ρi jhs
i j(x(k)) + ∑

r = 1

R
φrtsr(x(k)) + ε2(x(k))

 is SOS, i ∈ p, j ∈ c, r ∈ R, s ∈ n,

(36)

us
i j(x(k)) − qs

i j(x(k)) + ms
i(x(k)) − ws

i(x(k))

+ ps
j(x(k)) − zs

j(x(k)) + hs
i j(x(k)) − jsi j(x(k))

+ ∑
r = 1

R
(σri j + ℓkri + Γr j)tsr(x(k))

 is SOS, i ∈ p, j ∈ c, r ∈ R, s ∈ n,

(37)

us
i j(x(k)) is SOS, i ∈ p, j ∈ c, s ∈ n, (38)

ws
i(x(k))(x(k)) is SOS, i ∈ p, s ∈ n, (39)

ms
i(x(k)) is SOS, i ∈ p, s ∈ n, (40)

zs
j(x(k)) is SOS, j ∈ c, s ∈ n, (41)

ps
j(x(k))(x(k)) is SOS, j ∈ c, s ∈ n, (42)

jsi j(x(k)) is SOS, i ∈ p, j ∈ c, s ∈ n, (43)

hs
i j(x(k)) is SOS, i ∈ p, j ∈ c, s ∈ n, (44)

tsr(x(k))(x(k)) is SOS, r ∈ R, s ∈ n, (45)

where ε1 > 0 is a predefined scalar and ε2(x(k)) > 0 is a predefined
scalar polynomial; qs

i j(x(k)) is defined in (21); the feedback gains
and the other variables are defined in Theorem 1. λ is a decision
variable vector and obtained by satisfying Theorems 1 and 2 via
the SOS approach.

 
Proof: The SOS-based stability conditions (35)–(45) is obtained

based on Lyapunov stability theory which has been carried out in
the terms from (19)–(34). □

 
Remark 3: In terms of designing the slack matrices

Mi(x(k)) ∈ ℜn, Wi(x(k)) ∈ ℜn, P j(x(k)) ∈ ℜn, Z j(x(k)) ∈ ℜn,
Hi j(x(k)) ∈ ℜn, Ji j(x(k)) ∈ ℜn and Tr(x(k)) ∈ ℜn in SOS-based
stability conditions (36)–(45), we only predefine the polynomial of
degree in x(k) of these slack matrices, but the specific parameters
corresponding to x(k) will be numerically solved by MATLAB
third party toolbox SOSTOOLS. In terms of parameters ηi, ηi, φ j,
φ j, ρi j, ρi j, ℓri, Γr j and φr in SOS-based stability conditions (36)–
(37), they can be obtained numerically by satisfying (22)–(25).

4 Simulation example
In this section, we employ a numerical example of discrete-time
PFMB with time delay to validate the proposed theorems in the
previous section. The exampled system has three fuzzy rules with
the following subsystem, input and time-delay matrices:
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x(k) = [x1(k) x2(k)]T,
A10(x1(k))

= 0.06b + 0.7 + 0.015x1(k) − 0.001x1(k)2 0.2
0.2 0.3

,

A20(x1(k)) = 0.4 0.1 − 0.01x1(k)
0.2 0.1a

,

A30(x1(k)) =
0.03 0.4

0.24 + 0.01x1(k) 0.06 + 0.0003x1(k)2 ,

B1(x1(k)) =
0.1b + 0.4

0.1 − 0.001x1(k)2 ,

B2(x1(k)) = 1 + 0.015x1(k)2

−0.1 + 0.001x1(k)2 ,

B3(x1(k)) = −1 + 0.005x1(k)2

0.1 − 0.001x1(k)2 ,

A11 = A21 = A31 = 0.01 0
0 0 ,

A12 = A22 = A32 = 0.01 0
0 0 ,

where predefined constant scalars a and b are setting in the range
of 5.5 ≤ a ≤ 9 and 4.5 ≤ b ≤ 6.7 with the interval of 0.5 and 0.2,
respectively. In this way, a two-dimensional space is provided.
When the positivity and stability conditions based on Remark 2 or
Theorem 2 given in this paper satisfied, corresponding specific
value of parameter a and b within the range will be marked with
corresponding symbol. Otherwise, leave it blank. Therefore, the
size of the stability region can be visualised. The feasible regions
guaranteeing the positivity and stability of PFMB control system
with time delay can be demonstrated and compared in one two-
dimensional space.

The membership functions of three-rule polynomial fuzzy
model are selected as

w1(x1) = 1 − 1
(1 + e−(x1 − 6))

,

w2(x1) = 1 − w1(x1) − w3(x1),

w3(x1) = 1
(1 + e−(x1 − 14))

.

Based on IPC design method, the membership functions of a
two-rule polynomial fuzzy controller which is designed to
guarantee the positivity and stability of the system are defined as
follows:

m1(x1) = e−(x1 − 10)2/12,
m2(x1) = μN1

2(x1) = 1 − m1(x1) .

The shape of the above membership functions is shown in Fig.
1. 

We first use the asymptotic stability conditions in Remark 2
which considers no information of membership functions to design
the PFMB controller and guarantee the system positivity and
stability. If the term ys

j(x(k)) is set as polynomial of degrees 0 to 4
in x1 for j ∈ c, s ∈ n, no feasible solutions can be found to
guarantee the stability and positivity of discrete-time PFMB
control system with time delay. Therefore, we need a relaxed
formulation to find the solution, and we employ Theorem 2 which
considers the relationship constraint information between
membership functions of polynomial fuzzy model and the
controller along with the boundary information of the membership
functions. The term ys

j(x(k)) is set as polynomial of degrees 0 to 4
in x1, Ui j(x(k)), Wi(x(k)), Mi(x(k)), Z j(x(k)), P j(x(k)), Ji j(x(k)) and
Hi j(x(k)) all as polynomial of degree 0 in x1 and Tr(x(k)) as
polynomial of degrees 0 to 4 in x1 for i ∈ p, j ∈ c, s ∈ n. No
feasible solution can be found for the system whose matrices

Tr(x(k)) with R = 1 (cf. (32)). Feasible solutions can be found for
those with R = 2, R = 3 and R = 4 to guarantee the stability and
positivity of discrete time PFMB control system with time delay as
shown in Fig. 2 represented by symbols ‘+’, ‘◻’ and ‘∘’,
respectively. The relationship constraint information of
membership functions of the polynomial fuzzy model and
controller, cf. (32), from r = 1 to r = 4 is shown in Table 1. The
upper and lower boundary of membership functions, cf. from (26)
to (31), is shown in Table 2. 

If we compare the feasible regions based on Theorem 2 and
those based on Remark 2 (see Fig. 2), we can see that the feasible
regions based on Theorem 2 are larger than those based on Remark
2. This clearly shows that the positivity and stability conditions in
Theorem 2 which considers the information of membership
functions lead to more relaxed stability and positivity conditions
when compared to the stability formulation in Remark 2 with no
information of membership functions. The reason of obtained
relaxed stability conditions is that the stability conditions obtained
are not for any shape of membership functions but dedicated to the
relationship constraint between the membership functions of the
fuzzy model and the controller to be controlled, therefore the
conservativeness of SOS based stability and positivity conditions is
reduced. To demonstrate the effect of amount of the relationship
constraint information from membership functions on stability and
positivity analysis, we can see that the feasible regions based on
Theorem 2 with R = 4 are the largest compared with those with
R = 2 and R = 3. The feasible regions based on Theorem 2 with
R = 3 are smaller than those with R = 4 but larger than those with
R = 2 (see Fig. 2). There is no feasible regions found with R = 1.
This shows introducing more relationship constraint information
between the membership functions of fuzzy model and controller

Fig. 1  Membership functions of the polynomial fuzzy model (solid lines)
and polynomial fuzzy controller (dotted lines)

 

Fig. 2  Feasible regions given by Theorem 2 with R = 2, R = 3 and R = 4
indicated by ‘×’, ‘◻’ and ‘∘’, respectively
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into the stability analysis leads to more relaxation of the stability
conditions and increasing the probability of finding a feasible
solution.

To verify the feasible regions which can guarantee the stability
and positivity of discrete time PFMB control system with time
delay, in terms of feasible regions under different setting value of R
shown in Fig. 2, the transient response of system states x(k) with
initial conditions ϕ(0) = [20, 20]T is conducted. Firstly, the open-
loop transient response of system states x1(k) and x2(k) for a = 6.5,
b = 4.9 with time delay τ1 = 50, τ2 = 100 and τ1 = 100, τ2 = 200,
respectively, are obtained (cf. top left and right sub-figures in Fig.
3). As seen from top left and right sub-figures in Fig. 3, the original
open-loop discrete-time system is unstable. Referring to the
obtained feasible regions based on Theorem 2, a = 6.5, b = 4.9
indicated by ‘×’ in Fig. 2 can be employed to guarantee the
stability and positivity of discrete time PFMB control system with
time delay. In order to verify the result, the closed-loop transient
response of system states x1(k) and x2(k) for a = 6.5, b = 4.9 with
time delay τ1 = 50, τ2 = 100 and τ1 = 100, τ2 = 200, respectively,
are obtained (cf. bottom left and right sub-figures in Fig. 3). The
corresponding PFMB controllers are listed in Table 3. The transient
response of closed-loop system states is shown that the PFMB
controller can stabilise the system and guarantee the positivity.

The phase plots of x1(k) and x2(k) are simulated with eight
different initial conditions indicated by ‘∘’ including
ϕ(0) = [0, 9]T, [0, 18]T, [10, 5]T, [6, 20]T, [20, 15]T, [8, 10]T, [18, 6]T,

[20, 20]T . These results (see Fig. 4) show the original open-loop
discrete time system with a = 6.5, b = 4.9 is unstable. The PFMB
controller which is obtained from the feasible regions indicated by
‘×’ with a = 6.5, b = 4.9 in Fig. 2 is able to drive all the system
states to equilibrium (origin indicated by ‘◊’ in Fig. 4) while
always hold them positive based on different initial conditions.

In Figs. 5 and 6, we follow the same procedure with the same
initial conditions to obtain the transient response and phase plots of
system states x(k) for the open-loop discrete-time model with time
delay τ1 = 50, τ2 = 100 and τ1 = 100, τ2 = 200, respectively (cf. top
left and right sub-figures in Figs. 5 and 6 when parameters chosen
as a = 8.5, b = 6.3. The feasible regions indicated by ‘◻’ with
a = 8.5, b = 6.3 in Fig. 2 are chosen to obtain the transient
response of system states and phase plots as well. The transient
response and phase plots of system states for the closed-loop
discrete time PFMB controller with time delay τ1 = 50, τ2 = 100
and τ1 = 100, τ2 = 200, respectively, are obtained (cf. bottom left

Table 1 Relationship information between membership functions of fuzzy model and fuzzy controller
r Parameters referring to (32)

1 σ111 = 0.0143, σ112 = 0.1622
σ121 = 0.1679, σ122 = 0.0530,

σ131 = − 0.1523, σ132 = − 0.1187
ℓ11 = − 0.1953, ℓ12 = 0.1469, ℓ13 = 0.1826
Γ11 = − 0.1695, Γ12 = 0.1361, φ1 = 0.0934

2 σ211 = − 0.2709, σ212 = − 0.1181
σ221 = − 0.3730, σ222 = 0.0184

σ231 = − 0.1382, σ232 = − 0.2729
ℓ21 = − 0.1864, ℓ22 = 0.0395, ℓ23 = 0.3850
Γ21 = 0.1504, Γ22 = 0.2168, φ2 = − 0.1859

3 σ311 = 0.0535, σ312 = 0.0213
σ321 = − 0.1592, σ322 = − 0.1780
σ331 = − 0.0343, σ332 = − 0.1928

ℓ31 = 0.3237, ℓ32 = − 0.0103, ℓ33 = 0.2126
Γ31 = 0.1101, Γ32 = − 0.2328, φ3 = − 0.2245

4 σ411 = 0.2218, σ412 = 0.1624
σ421 = 0.1328, σ422 = 0.1692

σ431 = − 0.0631, σ432 = 0.0634
ℓ41 = 0.2512, ℓ42 = − 0.1850, ℓ43 = 0.2543
Γ41 = 0.1313, Γ42 = − 0.0582, φ4 = 0.0580

 

Table 2 Upper and lower boundary of membership
functions
Symbol Parameters referring from (26)–(31)
ηi η1 = 0.0000, η2 = 0.0025, η3 = 0.0000
ηi η1 = 0.9975, η2 = 0.9640, η3 = 0.9975
φ j φ1 = 0.0002, φ2 = 0.0000
φ j φ1 = 1.0000, φ2 = 0.9998

ρi j ρ11 = 0.0000, ρ12 = 0.0000, ρ21 = 0.0000
ρ22 = 0.0000, ρ31 = 0.0000, ρ32 = 0.0000

ρi j ρ11 = 0.1363, ρ12 = 0.9973, ρ21 = 0.9640
ρ22 = 0.3989, ρ31 = 0.1363, ρ32 = 0.9973

 

Fig. 3  Top left and right figures are transient response of open-loop
system states with time delay τ1 = 50, τ2 = 100 and τ1 = 100, τ2 = 200,
respectively. The bottom left and right figures are transient response of
closed-loop system states (feasible regions indicated by the symbols ‘×’
based on Theorem 2 referring to Fig. 2), with time delay τ1 = 50, τ2 = 100
and τ1 = 100, τ2 = 200, respectively, and parameters all chosen for a = 6.5;
b = 4.9
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and right sub-figures in Figs. 5 and 6). The corresponding PFMB
controllers are also listed in Table 3.

Then we choose the parameters as a = 8.5, b = 6.7, to plot the
transient response and phase plots of system states x(k) for the
open-loop discrete-time model with time delay τ1 = 50, τ2 = 100
and τ1 = 100, τ2 = 200, respectively (cf. top left and right sub-
figures in Figs. 7 and 8), and choose the feasible regions indicated
by ‘∘’ with a = 8.5, b = 6.7 in Fig. 2 to obtain the transient
response of system states and phase plots. The transient response
and phase plots of the closed-loop discrete-time PFMB control
system with time delay τ1 = 50, τ2 = 100 and τ1 = 100, τ2 = 200,
respectively, are also obtained (cf. bottom left and right sub-figures
in Figs. 7 and 8).

Comparing the open-loop and closed-loop results in Figs. 5 to 8
show that the closed-loop PFMB controller designed from the
feasible regions indicated by ‘◻’ and ‘∘’ can also guarantee the

positivity and drive all the system states to equilibrium (origin
indicated by ‘◊’ in Figs. 6 and 8) from any initial conditions while
the original open-loop discrete-time model cannot provide the
asymptotic stability. Interestingly when we change the values of
time delays τ1 = 50 to τ1 = 100 (cf. bottom left sub-figure in Figs.
4, 6 and 8), and τ2 = 100 to τ2 = 200 (cf. bottom right sub-figure in
Figs. 4, 6 and 8), the system become stable regardless of the values
of time delays. This is mainly because the stability conditions in
Theorem 2 are independent of delay period.

5 Conclusions
This paper investigates the positivity and stability of discrete-time
PFMB control system with time delay. The controller is designed
based on IPC design concept to allow the number of fuzzy rules
and membership function shape of the fuzzy model to be chosen

Table 3 Polynomial fuzzy controller based on Theorem 2 referring to Fig. 2
G j(x(k)) Parameters for polynomial fuzzy controller with a = 6.5; b = 4.9 and R = 2

G1(x(k)) 0.2817 × 10−6x1
4 − 0.5131

× 10−5x1
3 + 0.3450 × 10−3x1

2

−0.4895 × 10−3x1 − 0.1078,
0.1017 × 10−6x1

4 + 0.9506 × 10−6x1
3

−0.2073 × 10−3x1
2 + 0.1537 × 10−2x1

+0.8714 × 10−1,
G2(x(k)) 0.2832 × 10−6x1

4 − 0.5658
× 10−5x1

3 + 0.2782 × 10−3x1
2

+0.1690 × 10−3x1 − 0.1372,
0.1017 × 10−6x1

4 + 0.1653 × 10−5x1
3

−0.2397 × 10−3x1
2 + 0.1129 × 10−2x1

+0.5773 × 10−1 .
G j(x(k)) parameters for polynomial fuzzy controller with

a = 8.5; b = 6.3 and R = 3
G1(x(k)) 0.4741 × 10−8x1

4 − 0.1652
× 10−5x1

3 + 0.8661 × 10−3x1
2

−0.1073 × 10−2x1 − 0.2032,
−0.7066 × 10−9x1

4 − 0.2661 × 10−6x1
3

−0.1036 × 10−2x1
2 + 0.2483 × 10−2x1

+0.2074 × 10−1,
G2(x(k)) 0.6686 × 10−8x1

4 − 0.1444
× 10−5x1

3 + 0.8287 × 10−3x1
2

−0.3654 × 10−2x1 − 0.1885,
−0.7274 × 10−9x1

4 − 0.7636 × 10−7x1
3

−0.2704 × 10−4x1
2 + 0.4778 × 10−3x1

+0.2448 × 10−1 .
G j(x(k)) parameters for polynomial fuzzy controller with

a = 8.5; b = 6.7 and R = 4
G1(x(k)) 0.6449 × 10−8x1

4 − 0.1512
× 10−5x1

3 + 0.8135 × 10−3x1
2

−0.8008 × 10−3x1 − 0.2078,
−0.2614 × 10−9x1

4 − 0.2597 × 10−6x1
3

−0.2527 × 10−4x1
2 + 0.2368 × 10−2x1

−0.5647 × 10−2,
G2(x(k)) 0.5441 × 10−8x1

4 − 0.1409
× 10−5x1

3 + 0.8113 × 10−3x1
2

−0.1643 × 10−2x1 − 0.1984,
0.2585 × 10−11x1

4 − 0.3007 × 10−6x1
3

−0.3328 × 10−4x1
2 + 0.2160 × 10−2x1

+0.5178 × 10−2 .
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Fig. 4  Top left and right phase plots are open-loop system states with time delay τ1 = 50, τ2 = 100 and τ1 = 100, τ2 = 200, respectively. The bottom left and
right phase plots are closed-loop system states (feasible regions indicated by the symbols ‘×’ based on Theorem 2 referring to Fig. 2), with time delay τ1 = 50,
τ2 = 100 and τ1 = 100, τ2 = 200, respectively, and parameters all chosen for a = 6.5; b = 4.9

 

Fig. 5  Top left and right figures are transient response of open-loop system states with time delay τ1 = 50, τ2 = 100 and τ1 = 100, τ2 = 200, respectively. The
bottom left and right figures are transient response of closed-loop system states (feasible regions indicated by the symbols ‘◻’ based on Theorem 2 referring to
Fig. 2), with time delay τ1 = 50, τ2 = 100 and τ1 = 100, τ2 = 200, respectively, and parameters all chosen for a = 8.5; b = 6.3

 

Fig. 6  Top left and right phase plots are open-loop system states with time delay τ1 = 50, τ2 = 100 and τ1 = 100, τ2 = 200, respectively. The bottom left and
right phase plots are closed-loop system states (feasible regions indicated by the symbols ‘◻’ based on Theorem 2 referring to Fig. 2), with time delay
τ1 = 50, τ2 = 100 and τ1 = 100, τ2 = 200, respectively, and parameters all chosen for a = 8.5; b = 6.3
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independently from those of the controller. This allows the
information of membership functions, i.e. (i) the boundary
information of membership functions of the model and the
controller, and (ii) the relationship constraint information of the
membership functions between the model and controller, to be
introduced in the stability analysis in form of slack matrices. As a
result, we relax the conservative formulation for the asymptotic
stability and positivity conditions described in Theorems 1 and 2.
We have shown introducing more numbers of the relationship
constraint of the membership functions between model and
controller into the stability analysis will further relax the stability
and positivity formulations.

In terms of future research direction, the stability and positivity
conditions of discrete time PFMB control system with time delay
can be further relaxed by considering the information premise
variables in the proposed stability and positivity theorem. The time
delay constant term in this paper can be extended into time-varying
delay terms. Furthermore, the proposed fuzzy co-positive
Lyapunov function stability analysis can be employed to control
discrete time positive non-linear system with time delay by
combining other control methods such as output-feedback and
observer-based feedback controller. Furthermore, both widely
application in communication systems and formation flying and
theoretical challenge of switched positive systems with time delays
show a big motivation to study such different kinds of system.
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